Archive for June, 2016

The Boeing 777 pilot resting area, for example, includes two beds and business class seats with plenty of room to spare. In some planes, meanwhile, the pilot area even contains its own lavatory.

Source: There’s a Secret Room on Airplanes That Flight Attendants Don’t Want You to Know About – Page 14 of 20

And although the main goal of these bunk rooms is to provide a quiet place for crew to recharge their batteries, some rooms have extra perks. These can include, for instance, small TVs and other sources of entertainment.

Source: There’s a Secret Room on Airplanes That Flight Attendants Don’t Want You to Know About – Page 12 of 20

The large majority of CRCs, therefore, are placed at the top of the airplane, just behind the cockpit. This avoids taking up valuable cargo space in the bottom of the plane, and it doesn’t result in any loss of passenger seats in the cabin area.

Source: There’s a Secret Room on Airplanes That Flight Attendants Don’t Want You to Know About – Page 6 of 20

Fortunately, newer airplane models, such as the Boeing 777 and 787, provide the crew with secret rooms known as Crew Rest Compartments (CRCs). These areas, which are accessible via hidden stairs and ladders, allow the pilots and flight attendants to get some valuable shut-eye during long flights.

Source: There’s a Secret Room on Airplanes That Flight Attendants Don’t Want You to Know About – Page 4 of 20

Passenger airplanes aren’t exactly known for being the most spacious way to travel, particularly when traveling coach, since the goal is to comfortably fit in as many people as humanly possible. But despite appearances, there are in fact some secret compartments on board that only the crew can access.

Source: There’s a Secret Room on Airplanes That Flight Attendants Don’t Want You to Know About

“The (mother) cooperated with the investigation and was not arrested,” police said

Source: Oregon mother fatally shoots intruder found in her child’s bedroom | Reuters

Tanzania could now hold the solution to the world’s chronic helium shortage.

Source: Discovery of new helium reserves a “game changer” for medical industry | Ars Technica

Source: Miss Teen USA Drops the Swimsuit Competition: It’s a Start | E! News

The Lesedi La Rona diamond is the second-largest diamond discovered in over a century. But it failed to sparkle enough interest from bidders at a June 28 Sotheby’s auction in London. A Journalpedia entry by WSJ’s Jason Bellini. Image: European Pressphoto Agency

Source: Lesedi La Rona Diamond: 2nd-Largest Ever Mined

The Latest on the Alaska governor’s decision for funding yearly oil checks given to residents (all times local):

Source: The Latest: Alaska governor limits oil checks to $1,000 – The Washington Post

SEATAC, Wash. – An American Airlines jet with 151 passengers and six crew members aboard caught fire at Sea-Tac Airport on Wednesday morning as it was taxiing toward the runway.The jetliner, Flight 728, was destined for Philadelphia when a controller warne

Source: American Airlines jet catches fire at Sea-Tac Airport | KOMO

The clincher was the link between memory improvement and cathepsin levels, Duzel says.

“Those individuals that showed the largest gains in memory also were those that had the largest increase in cathepsin,” he says.

Of course, cathepsin is probably just one of several factors linking exercise and brain function, van Praag says.

“I don’t think we have fully explained how exercise improves memory,” she says, “but I think we’ve made a significant step forward.”

But cathepsin has a dark side. It’s produced by tumor cells and has been linked to the brain plaques associated with Alzheimer’s. So, trying to artificially raise levels might not be a good idea, van Praag says.

In mice, monkeys and people, exercise releases a protein called cathepsin B. And as blood and brain levels of this protein rise, memory gets better. But the protein has a dark side, too.

Source: Cathepsin B, A Protein With A Dark Side, Links Memory And Exercise : Shots – Health News : NPR

With Lisa, Dr. Yaltho ran a variety of tests to make sure she had no signs of a stroke or a seizure. — because having part of your brain die would explain why you would sound British.  Hahahahahahahahahahhaha

Source: Mom with Foreign Accent Syndrome hopes to help science with rare case | 9news.com

It’s referred to as the “brain-eating amoeba.” Naegleria fowleri resides in warm freshwater, hot springs and poorly-maintained swimming pools. When the single-celled organism enters a person’s body through the nose, it can cause a deadly infection that leads to destruction of brain tissue.

These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention.

But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused caused by N. fowleri, said health officials in North Carolina.

Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while whitewater rafting in Charlotte during a church trip, the Charlotte Observer reported.

The N. fowleri infection “resulted in her developing a case of a meningitis . . . and inflaming of the brain and surrounding tissues, and unfortunately she died of this condition,” Mecklenburg County Health Department director Marcus Plescia told reporters Wednesday.

Mr. Plescia said that, while they were still gathering information from health officials in Ohio, they do know one of the stops Ms. Seitz’s group made was to the U.S. National Whitewater Center.

“We are continuing to work with health officials to examine the facts involved in Lauren’s case, although we have been told repeatedly that little additional information will be determinable specific to this occasion,” the center’s CEO, Jeffrey Wise, said in a statement.

Ms. Seitz belonged to the youth music ministry group at Church of the Messiah United Methodist Church in Westerville. Senior pastor Jim Wilson told NBC4I that she was one of 32 young people who traveled in Ohio and to West Virginia and North Carolina to sing at churches and nursing homes.

Pastor Wilson said the group had one day of recreation: whitewater rafting in North Carolina.

“We will deeply miss her, but we were so blessed by her presence and her gifts that she just shared in a beautiful way,” he told the station. “She was a special person.”

Ms. Seitz likely became infected while out of Ohio, Mitzi Kiline, spokewoman for the Franklin County Department of Public Health in Ohio, told the Columbus Dispatch.

The U.S. National Whitewater Center is a locally owned nonprofit that sources water from the Charlotte Mecklenburg Utilities Department and two wells. The water, contained in a concrete, closed-loop system, is disinfected with ultraviolet radiation and filtered with a disc system, according to the center. Chlorine is also used periodically.

The center remains open. But it said it has released additional chlorine “into the system in an abundance of caution.”

Mr. Plescia said the water at the center “is as safe as any body of water,” the Observer reported. “Any time you go into a lake or pond, there are things in the water that can cause illnesses.”

While cases of N. fowleri infection are extremely rare, they make news as they seem to often impact healthy, and young, people. And given the amoeba’s prevalence in water, it’s not clear why some people become infected and others don’t.

Last summer, a 14-year-old boy died days after swimming in a Minnesota lake. The previous summer, a 9-year-old Kansas girl died from a suspected N. fowleri infection.

People cannot be infected by drinking contaminated water. Rare infections can happen when such water enters the nose.

“The risk of Naegleria fowleri infection is very low. There have been 37 reported infections in the U.S. in the 10 years from 2006 to 2015, despite millions of recreational water exposures each year,” according to the CDC. “By comparison, in the ten years from 2001 to 2010, there were more than 34,000 drowning deaths in the U.S.”

Most of the cases in the United States involve contaminated recreational water, according to the CDC. Between 2006 and 2015, three people were infected by contaminated tap water used for nasal irrigation.

Infections typically happen during summer months, and in southern states.

Ms. Seitz had just graduated from Westerville South High School, where she was a drum major in the school’s marching band, the Dispatch reported.

The band held a memorial and candlelight vigil this week.

“They do not prepare you for this type of thing in school,” band director John Laswell wrote on Facebook. “This was an enormous loss for the band but also to the Westerville community and family. Lauren just graduated in May, and was one of the most talented, humble, and caring students I’ve ever taught.”

Post-Gazette.com – It’s referred to as the “brain-eating amoeba.” Naegleria fowleri resides in warm freshwater, hot springs and poorly-maintained swimming pools. When the single-celled organism enters a person’s body through the nose, it can cause a deadly infection that leads to destruction of brain tissue. These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention. But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused caused by N. fowleri, said health officials in North Carolina. Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while

Source: ‘Brain-eating amoeba’ blamed in teen’s death following church trip | Pittsburgh Post-Gazette

Autophagy – the housekeeper in every cell that fights aging

By James P Watson and Vince Giuliano

Background and introduction

There is a wide variety of genetic manipulations, pharmacologic manipulations, and nutrient manipulations that have been shown to alter lifespan in model organisms.  These include caloric restriction, “loss of function” mutations, “gene knock out” models, phytochemicals, and drugs that down regulate aging pathways (mTOR, insulin/IGF-1, etc.).  It also includes “gain of function mutations”, transgenic models, phytochemicals, and drugs that up regulate longevity promoting pathways (AMPK, FOXO, Klotho, etc.).  At first glance, all these interventions may seem to be unrelated, suggesting that aging is a multifactorial problem with no common denominator to longevity.  On further examination, however, there is a common denominator to all of these interventions – autophagy.  Autophagy (“self eating”) is an old, evolutionarily conserved stress response that is present in all living cells. Like apoptosis, autophagy is a programmed response and has several sub-pathways.  Unlike apoptosis, autophagy promotes life rather than death.  Recent discoveries have shown that almost every genetic, dietary, and pharmacologic manipulation proven to extend lifespan activates autophagy as part of its mechanism of action.

Autophagy is the way your cells “clean house” and “recycle the trash”.  Along with the ubiquitin proteasome system, autophagy is one of the main methods that cells use to clear dysfunctional or misfolded proteins.  Autophagy can clear any kind of trash: intracellular viruses, bacteria, damaged proteins, protein aggregates and subcellular organelles. Although autophagy has long been known to exist, only recently has there been a clear understanding of the genes and pathways related to it.  This recent evidence suggests that the declining efficacy of autophagy may be a driver of many of the phenotypic phenomena of aging.  This blog entry explores the “evidence for the autophagy theory of aging” and builds a strong case that defective autophagy is a central driver for age-related diseases and aging itself.

Autophagy now appears to be a downstream event following insulin/IGF-1 pathway down-regulation, mTOR inhibition, Klotho activation, AMPK activation, Sirtuin dependent protein deacetylation, and histone acetyl transferase inhibition.  Autophagy explains in part, the beneficial effects of caloric restriction, caffeine, green tea, rapamycin, resveratrol, metformin, spermidine, lithium, exercise, hypoxia, Torin-1, trehalose, and a host of other natural and synthetic compounds.

There is much stronger evidence of a link between autophagy activation and longevity than there is with any other longevity interventions such as exogenous anti-oxidant supplementation, endogenous anti-oxidant up regulation, micronutrient replacement, hormone replacement, anti-inflammatory therapy, telomerase activation, or stem cell therapy.   For this reason, we have listed below the top reasons why “eating yourself for dinner” mauy well be the best way to promote health and longevity.

What is autophagy?

Biological entities employ various mechanisms to keep themselves functioning healthily, including mechanisms to get rid of defective or no longer wanted components.  Inter and intra-cell signaling can drive a cell to destroy itself, for example (cell apoptosis).  Short of apoptosis, on the cell level there are several mechanisms for getting rid of defective or no longer needed components including organelles and proteins.  From the 2008 publication Autophagy and aging:  “All cells rely on surveillance mechanisms, chaperones and proteolytic systems to control the quality of their proteins and organelles and to guarantee that any malfunctioning or damaged intracellular components are repaired or eliminated [1,2]. Molecular chaperones interact with unfolded or misfolded proteins and assist in their folding [3]. However, if the extent of protein damage is too great, or the cellular conditions are not adequate for re-folding, the same molecular chaperones often deliver proteins for degradation. Two proteolytic systems contribute to cellular clearance: the ubiquitin-proteasome and the lysosomal systems [4].”  Autophagy is concerned with the lysosomal system and involves the “degradation of any type of intracellular components including protein, organelles or any type of particulate structures (e.g. protein aggregates, cellular inclusions, etc.) in lysosomes(ref)”

process-of-autophagy

Image source

Autophagy, or autophagocytosis, is a catabolic process involving the degradation of a cell’s own components through the lysosomal machinery. It is a tightly regulated process that plays a normal part in cell growth, development, and homeostasis, helping to maintain a balance between the synthesis, degradation, and subsequent recycling of cellular products. It is a major mechanism by which a starving cell reallocates nutrients from unnecessary processes to more-essential processes. Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer(ref).”

Top 16 Key Facts about Autophagy

There are three main pathways of Autophagy – Macroautophagy, Microautophagy, and Chaperone-mediated Autophagy (CMA).

All 3 autophagy pathways are constitutively active (i.e. they can occur at basal levels) but can also be up regulated by cellular stress). Macroautophagy is the primary “broom” that sweeps the house. Macroautophagy is initiated when the material to be removed is tagged with ubiquitin.  This signals a complex series of molecular events that leads to the formation of a membrane  around the material to be removed and recycled.  This membrane formation around the debris is called a autophagosome.  Once formed, the autophagocome fuses with a lysosome to form an autolysosome.  Once fusion occurs, the acid hydrolases found inside the lysosomes start digesting the damaged proteins and organelles.  When damaged mitochondria are digested by macroautophagy, it is called mitophagy, which is a specific type of macroautophagy. Macro-autophagy can also remove and recycle mutated or free-radical damaged proteins or protein aggregates.  Macroautophagy  and other sub cellular organelles (peroxisomes, endoplasmic reticulum, etc.)  Even part of the cell nucleus can undergo autophagy (called “piecemeal microautophagy of the nucleus” – PMN).

Macroautophagy   Image source

macroautophagy

Chaperone-mediated autophagy (CMA) is a specific mechanism of autophagy that requires protein unfolding by chaperones.   The other two mechanisms do not require protein unfolding (macroautophagy and microautophagy).  Since protein aggregates cannot be unfolded by chaperone proteins, both the ubiquitin-proteasome system and chaperone-mediated autophagy are unable to clear these protein aggregates.  For this reason, macroautophagy may be the most important pathway for preventing Alzheimer’s disease, Parkinson’s disease, Fronto-temporal dementia, and all of the other neurodegenerative diseases associated with protein aggregate accumulation.

Microautophagy is essentially just an invagination (folding in) of the lysosomal membrane and does not require the formation of an double-membrane autophagosome.  Both CMA and microautophagy appear to play a minor role in “house keeping”.  Here are diagrams of these types of autophagy.

kindsofautophagy1

Image source

 

Image sourcekindsofautophagy

 2. Autophagy is the only way to Get Rid of Old Engines  i.e. damaged mitochondria

Autophagy is the best way to get rid of bad mitochondria without killing the cell.  The process is called “mitophagy.” Since bad mitochondria produce most of the “supra-hormetic doses of ROS”, this is really, really, important. This is explained in our recent blog entries related to mitochondria, Part 1, and Part 2.  For brain cells, heart cells, and other post mitotic cells that we all want to “hang on to”, mitophagy is probably the most important anti-aging value of mitophagy.  Bad mitochondria are phosphorylated by the kinase PINK1.  Then these bad mitochondria are ubiquinated by the E3 ligase Parkin.  The ubiquinated bad mitochondria are then selectively destroyed by mitophagy, which is a form of macroautophagy.

mitophagy1Mitophagy   Image source

The 2007 publication Selective degradation of mitochondria by mitophagy reviews the topic.  “Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondrial metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, and we use the term mitophagy to refer to mitochondrial degradation by autophagy. Although long assumed to be a random process, increasing evidence indicates that mitophagy is a selective process.”

3. Autophagy is the best Way to Get Rid of Junk.    – protein aggregates, etc.

Autophagy is the best way to get rid of protein aggregates like those associated with all of the neurodegenerative diseases, like amyloid beta, tau tangles, alpha synuclein aggregates, TDP-43 aggregates, SOD aggregates, and Huntington protein aggregates.  These aggregates are NOT digested via the ubiquitin-proteasome system, since they cannot be “unfolded”.   For this reason, autophagy is probably the most important cellular mechanism for clearing protein aggregates found in neurodegenerative diseases.  Autophagy can also clear out bad cytoplasm (Cvt), endoplasmic reticulum, peroxisomes (micro and macropexophagy), Golgi apparatus,  and even damaged parts of the nucleus (PMN).  See for example (2012) Degradation of tau protein by autophagy and proteasomal pathways and (2009) Autophagy protects neuron from Abeta-induced cytotoxicity

Autophagy is protective by quietly getting rid of multiple other unwanted substances.  For example, it protects against alcohol-induced liver damage.  Consider what is going on in this diagram from the 2011 publication The emerging role of autophagy in alcoholic liver disease:

alcoholmitophagyImage source     “Alcohol consumption causes hepatic metabolic changes, oxidative stress, accumulation of lipid droplets and damaged mitochondria; all of these can be regulated by autophagy. This review summarizes the recent findings about the role and mechanisms of autophagy in alcoholic liver disease (ALD), and the possible intervention for treating ALD by modulating autophagy(ref).”

4. Aging = Autophagy decline. 

According to the 2008 publication Autophagy in aging and in neurodegenerative disorders: “Growing evidence has indicated that diminished autophagic activity may play a pivotal role in the aging process. Cellular aging is characterized by a progressive accumulation of non-functional cellular components owing to oxidative damage and a decline in turnover rate and housekeeping mechanisms. Lysosomes are key organelles in the aging process due to their involvement in both macroautophagy and other housekeeping mechanisms. Autophagosomes themselves have limited degrading capacity and rely on fusion with lysosomes. Accumulation of defective mitochondria also appears to be critical in the progression of aging. Inefficient removal of nonfunctional mitochondria by lysosomes constitutes a major issue in the aging process. Autophagy has been associated with a growing number of pathological conditions, including cancer, myopathies, and neurodegenerative disorders.”

The relationship of autophagy decline to hallmarks of aging has been known for a long time and have been best studied in liver cells.  The auto florescent protein lipofuscin is the oldest and simplest biomarker of declining autophagy and represents undigested material inside of cells.  The Lewy bodies seen in several neurodegenerative diseases (including “Parkinson’s disease with dementia”) are also biomarkers of declining autophagy and may specifically be due to “declining mitophagy”.  Declining autophagy is particularly important in post-mitotic cells such as those in the brain, heart, and skeletal muscle where very little cell regeneration via stem cells occurs.  For mitotic tissues such as the GI tract, bone marrow, and skin, autophagy decline may not be as detrimental, since apoptosis is another normal method for getting rid of bad cells.

The failure of autophagy with aging has several possible causes:

a. Fusion problems – Autophagic vacuoles accumulate with age in the liver.  This may be due to a problem of fusion between the autophagosomes and the lysosomes.

b. Glucagon deficiency – Glucagon is a hormone that enhances macroautophagy. “—the stimulatory effect of glucagon [on autophagy] is no longer observed in old animals.  See item (b) in the next list below.(ref)“

c. Negative signaling via the Insulin receptor – Insulin activates the Insulin/IGF-1 pathway which activates mTOR.  mTOR activation inhibits autophagy (see below).  Even in the absence of insulin, there is up-regulation with aging of the insulin/IGF-1 signaling via the insulin receptor tyrosine kinase.  This would activate mTOR.

d. Inadequate turnover of damaged mitochondria – Mitophagy decline may be one of the mechanisms that is responsible for the decline in autophagy with aging.  Specifically, if mitophagy does not keep up with the demand for damaged mitochondrial clearance, a higher baseline ROS would occur, which would damage proteins, cell membrane lipids, and cell nucleus DNA.

e. Energy compromise – With aging, there is a decline in energy production by the cells.  This may be one of the reasons for the decline in autophagy seen in aging.

Here is a depiction of some of the main problems associated with decline of autophagy in aging:

conseqagingautop

Some consequences of failure of autophagy with aging  “Possible causes and consequences of the failure of macroautophagy in old organisms are depicted in this schematic model (brown boxes”   Image source

(a) The accumulation of autophagic vacuoles with age could result from the inability of

lipofuscin- loaded lysosomes to fuse with autophagic vacuoles and degrade the sequestered content.

(b) In addition, the formation of autophagosomes in old cells might be reduced because of the inability of macroautophagy enhancers (such as glucagon) to induce full activation of this pathway. The stimulatory effect of glucagon is compromised in old cells because of maintained negative signaling through the insulin receptor (IR) even under basal conditions (i.e. in the absence of insulin). Maintained insulin signaling would activate mTOR, a known repressor of macroautophagy.

(c) Inadequate turnover of organelles, such as mitochondria, in aging cells could increase levels of free radicals that generate protein damage and

(d) Aging could also potentiate the inhibitory signaling through the insulin receptor.

(e) An age-dependent decline in macroautophagy can also result in energetic compromise of the aging cells.

5.  Genetic manipulations that increase lifespan in all model organisms stimulate autophagy.

Knocking out macroautophagy takes away at least 50% of the long-lived mutant’s added lifespan.  This same “loss of longevity” is seen with Caloric restriction in “macroautophagy knockouts”.    The following diagram shows how important autophagy is in long-lived mutant nematodes and how this is important for increasing lifespan, reducing cellular damage, and increasing function.

autophagymutants

Image source

The most well studied “mutants” are model organisms where one of the following pathways are altered by a gene mutation or a gene knock out.  When an additional “knocking out” of an autophagy gene is done, approximately 1/2 of the added lifespan of the long lived mutants (vs wild type) appears to be “wiped out” by loosing autophagy.   Similar findings occur in “macroautophagy  knock-outs” subjected to caloric restriction, etc.  This suggests to me that 1/2 of the benefits of caloric restriction are due to stimulating autophagy.  Caloric restriction down regulates all of the”nutrient sensing pathways that are negative regulators of autophagy” and up regulates other “ nutrient sensing pathways that are positive regulators of autophagy”.  The following interconnected “nutrient -sensing pathways” affect macroautophagy:

a. IGF-1: two mechanisms:

i. decreasing Insulin-IGF-1 pathway => tyrosine kinase => inhibits Akt phosphorylation of TSC =>  inhibition of raptor in mTOR complex

ii. decreasing insulin/IGF-1 pathway => Foxo transcription factor translocation to nucleus  => FOXO stimulates autophagy via activating two  autophagy genes – LC3 and BNIP3.

b. mTOR:  three mechanisms account for the activation of autophagy by mTOR inhibition

i.  mTOR inhibition => decreases phosphorylation of Atg1 (aka ULK1/2). Also decreases phosphorylation of  Atg13 and Atg17.  Phosphorylation of ULK1/2, Atg13, and Atg17 inhibits autophagy initiation.

ii. decreasing mTOR pathway => decreases phosphorylation of 4EBP1 => blocks effect of eIF4F => autophagy activation.

iii. decreasing mTOR pathway => decreases phosphorylation of S6K => S6K no longer active => inhibition of autophagy.

Microsoft PowerPoint - Final IBDMN Fig 2

Signaling pathways that affect autophagy Image source

“The (mammalian) target of rapamycin (mTOR) is a primordial negative regulator of autophagy inorganisms from yeast to man. mTOR is inhibited under starvation conditions, and this contributes to starvation-induced autophagy via activation of mTOR targets Atg13, ULK1, and ULK2. This inhibition can be mimicked by mTOR inhibitory drugs like rapamycin (Ravikumar et al., 2010).  One of the important pathways regulating mTOR is initiated when growth factors like insulin-like growth factor bind to insulin-like growth factor receptors (IGF1R) (Figure 2). These receptors signal, via their tyrosine kinase activities, to effectors like the insulin receptor substrates (IRS1 and IRS2), which in turn activate Akt. Akt inhibits the activity of the TSC1/TSC2 (proteins mutated in tuberous sclerosis) complex, a negative regulator of mTOR. In this way, IGF1R signaling activates mTOR and inhibits autophagy, and the converse occurs when nutrients are depleted(ref).”

c. Ras/PKA:  decreasing Protein Kinase A pathway (aka Ras/cAMP) => decreases phosphorylation of 3 autophagy proteins (Atg1, Atg13, Atg18).

d. PKB/Akt: decreasing Protein Kinase B pathway (aka PkB/Akt or Sch9) => reduces inhibition of TSC-1 => decreased mTOR activity.

e. Sirtuin 1:  CR activates Sirtuin 1 => deacetylation of several autophagy gene products: Atg5, Atg7, Atg8/LC3.   Sirt1 also activates AMPK, activates FOXO3a, and inhibits mTOR via TSC-1/2

f. AMPK: AMPK pathway (aka LKB1-AMPK) activates autophagy via two methods:

i. AMPK activation => phosphorylates TSC2 and raptor => inhibits TORC1  (this requires glucose starvation).

ii. AMPK activation => direct phosphorylation of Atg1 (aka ULK1) => autophagy activation (this does NOT require glucose starvation).

g. Less-important pathways:

i.  Rim15:  increasing Rim15 Kinase pathway => Msn2 and Msn4 transcription factor translocation to nucleus => inhibits mTOR, PKA, and PKB pathways.

ii  ERK1/2:  ERK pathway – the extracellular signal-regulated kinase (ERK) also mediates starvation-induced autophagy.  (see #6 below for more details)

iii. JNK: JNK pathway – This is a MAPK that mediates starvation-induced autophagy. (see #6 below for more details).

The main pathways are depicted in the following diagram of how Calorie Restriction works (Ras/PKA and less important pathways not depicted).

Kroemer_3

Autophagy regulation      Image source

6. There are many other pathways that regulate autophagy that are not dependent on “nutrient sensing pathways.” 

(i.e. not those described above).

Although caloric restriction or fasting are clearly the most “potent” autophagy stimulators, since they can activate macroautophagy via the above “nutrient sensing pathwaysthere are many other pathways that can activate autophagy.  Here an explanation of the roles of the key kianses involved:

a. PI3Ks and Akt – PI3Ks are kinases that are mainly activated by growth factors, not starvation.  There are 3 classes of PI3Ks and the Class III PI3Ks directly positively activate autophagy (Vps34) whereas the Class I PI3Ks indirectly inhibit autophagy via mTOR and Akt.

b. MAPKs – Mitogen-Activated Protein Kinase – these are kinases that are mainly activated by growth factors, not starvation.  There are 3 classes:

i. ERK – Extracellular signal-Regulated Kinases (ERK) positively regulate autophagy by maturing autophagic vacuoles.  EKR also seems to specifically be involved with mitochondrial-specific autophagy (i.e. mitophagy).  Mitochondrial ERK may help protect from neurodegenerative diseases.  Cancer cells also activate mitochondrial ERK to cause chemoresistance.  ERK is activated downstream from Ras.  Ras activates Raf, which activates MEK.  MEK phosphorylates and activates ERK1 and ERK2.

This is the mechanism by which you can kill cancer with soy extracts, capsaicin, and Cadmium.  Here is how this works:

  • Soyasaponins (found in soybeans) => activates ERK => autophagy-induced death in colon cancer cells
  • Capsaicin (found in chili peppers) => activates ERK => autophagy-induced death in breast cancer cells
  • Cadmium (toxic metal) => activates ERK => autophagy-induced death in mesangial cells

ii. p38 – p38 is a MAPK that is a tumor suppressor.  p38 regulates autophagy but there is still controversy if it activates or inhibits autophagy.

iii. JNK – JNK is a MAPK that is activated by heat shock, osmotic shock, UV light, cytokines, starvation, T-cell receptor activation, neuronal excitotoxic stimulation, and ER stress.  With starvation, JNK does not phosphorylate Bcl-2, which prevents it from binding to beclin 1.  Beclin 1 can then induce autophagy.  Bcl-2 is an anti-apoptotic protein and can prevent apoptosis.  There are multiple phosphorylation sites on Bcl-2.  The degree by which JNK phosphorylates/dephosphorylates Bcl-2 may determine cell fate – i.e. apoptosis (death) vs autophagy (survival). See (2011) The Beclin 1 network regulates autophagy and apoptosis.

c. PKC – Protein Kinase C (PKC) is a family of kinases that were once thought to be associated mostly with apoptosis/anti-apototis.  Recent research has shown that PKCs also play a role in autophagy.  The effects of PKC depend on if the cellular stress is acute or chronic.  For instance, PKCg is an example of one of the PKCs where it stimulates autophagy with acute, short periods of hypoxia (via JNK activation) but suppresses autophagy with chronic hypoxia (via Caspace-3).   Another PKC, PKC0  is involved with ER-stress induced autophagy.  Acadesine (AICAR) induces autophagy via a PKC/Raf1/JNK pathway.  Acadesine (AICAR) in combination with GW1516 has shown to improve endurance-type exercise by converting fast-twitch muscle fibers into the more energy-efficient, fat-burning, slow-twitch muscle fibers.  These two compounds turned on 40% of the genes that were turned on when exercise + GW1516 were used together.  For this reason, acadesine (AICAR) has been termed an “exercise mimetic” and has been banned for use by athletes, since it is a performance enhancing drug, even though it is very safe.  The mechanism of action of AICAR may be in part its induction of autophagy.

d. Endoplasmic Reticulum Stress Kinases (i.e. the ER unfolded protein response) – Several kinases involved with the endoplasmic reticulum unfolded protein response (ER-UPR) have been found to activate autophagy.  They include the following:

i. IRE-1 – Inositol-requiring enzyme (IRE1) is one of the first proteins activated by the ER-UPR.  It up regulates autophagy genes (Atg5, 7, 8, 19).

ii. PERK – PERK must phosphorylate the eukaryotic initiation factor 2alpha (eIF2alpha) for LC3 conversion with ER-UPR induced autophagy.     PERK also up regulates Atg5.

iii. CaMKKbeta – ER stress results in calcium release from the ER.  This Ca++ release induces autophagy via the Ca dependent kinases.  The main one is called Ca/Calmodulin-dependent kinase beta (CaMKKbeta).  This is an “upstream activator” of AMPK, which in turn inhibits mTOR.  This is how calcium can induce autophagy.

iv. DAPK1 – Death-associated protein kinase 1 (DAPK1) is another Ca++/Calmodulin-regulated kinase that is important in ER-UPR induced autophagy. It induces autophagy by phosphorylating beclin 1, which is necessary for autophagosome formation.

erstressautophagy

Mechanisms connecting  ER stress and autophagyImage Source  “Mechanisms connecting ER stress and autophagy. Different ER stresses lead to autophagy activation. Ca2+ release from the ER can stimulate different kinases that regulate autophagy. CaCMKK phosphorylates and activates AMPK which leads to mTORC1 inhibition; DAPK phosphorylates Beclin-1 promoting its dissociation from Bcl-2; PKCθ activation may also promote autophagy independently of mTORC1. Inositol 1,4,5-trisphosphate receptor (IP3R) interacts with Beclin-1. Pharmacological inhibition of IP3R may lead to autophagy in a -independent manner by stimulating its dissociation from Beclin-1. The IRE1 arm of ER stress leads to JNK activation and increased phosphorylation of Bcl-2 which promotes its dissociation from Beclin-1. Increased phosphorylation of eIF2 in response to different ER stress stimuli can lead to autophagy through ATF4-dependent increased expression of Atg12. Alternatively, ATF4 and the stress-regulated protein p8 promote the up-regulation of the pseudokinase TRB3 which leads to inhibition of the Akt/mTORC1 axis to stimulate autophagy(ref).”

7. Excess baseline ROS from bad mitochondria induces Mitophagy.

 – ROS induces autophagy via a non-canonical pathway

This may be the mitochondrial signal for “selective destruction” of damaged mitochondria.  Exogenous ROS can also induce autophagy, however.  For instance, there is evidence that abnormal levels of H202 in the cytoplasm will induce macroautophagy. Hydrogen peroxide induces a “non-canonical autophagy” that is “beclin-1 independent” but requires the JNK-mediated activation of Atg7.  on of Atg7.

??

ROS induces autophagy: Roles of Akt, ERK, JNK and BeclinsImage source

8. Most all of the Pharmacologic manipulations that extend lifespan increase autophagy.

Here are some of the main ones:

a. Rapamycin – Autophagy explains most of the longevity and health benefits (mechanism of action) of Rapamycin

Since the protein kinase mTOR phosphorylates the 3 key autophagy initiating proteins (Atg1, Atg13, and Atg17),  it is considered the  “Master of Autophagy”.  Rapamycin inhibits both TORC1 and TORC2.  TORC1 inhibition is the the “direct” and primary mechanism by which rapamycin activates autophagy, but TORC2 inhibition has an “indirect” and independent method of activating autophagy via inhibiting Akt or Protein Kinase C.  (This is why Blagonosky in NY likes rapamycin over TORC1-specific mTOR inhibitors).

drugsautophagy

Image source  mTOR and autophagy, showing impacts of lithium and rapamycin

b. Metformin – .Autophagy may explain as much as 50% of the benefits (mechanism of action) of Metformin.

Metformin activates AMPK and therefore stimulates autophagy via TORC1-dependent and TORC-1 independent methods (see above).  For this reason, metformin is a good “autophagy drug”.  Metformin probably has many other mechanisms of action, however, which cannot be explained by the induction of autophagy.

signalization-pathways-of-metformin

Image source

c. Resveratrol – Resveratrol directly or indirectly activates the NAD+-dependent deacetylase, SIRT1.

SIRT1 activates autophagy by several different mechanisms, the 4 major ones being deacetylation of multiple cytoplasmic proteins including several involved with autophagy, such as ATG5, ATG7, and ATG8/LC3.  SIRT1 also deacetylates the FOXO transcription factors (FOXO3a, FOXO, and FOXO4), but the FOXO proteins are not required for autophagy induction.  It is likely that the effects of SIRT1 on FOXO deacetylation mediate other beneficial effects of resveratrol (not autophagy).

d. Spermidine – The benefits of spermidine can be partially explained by its effects on autophagy.  Spermidine is a histone acetylase inhibitor.  By inhibiting histone acetylase, spermidine allows for the up regulation of autophagy (Atg) genes.  It appears that like resveratrol, spermidine also stimulates overlapping deacetylation reactions of cytoplasmic proteins. See the 2009 publication Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

resveratrolspermidineautophagy

Image source

Microsoft Word - Figure 1

Spermidine and autophagy in normal and diabetic states  Image source

 

e. Lithium – The beneficial effects of Lithium for aging and for bipolar illness may be mediated in part by autophagy(ref).

9.  Exercise can both activate and inhibit autophagy.  

For this reason, the benefits of exercise are mostly due to non-autophagy factors.

Decreased autophagy mechanisms with exercise:  Exercise up regulates mTOR, especially resistance exercises like weight lifting.  Exercise also activates the IGF-1 pathway by increasing growth hormone secretion by the pituitary gland, which then in turn stimulates  IGF-1 production by the liver.  IGF-1 inhibits autophagy via the Insulin/IGF-1/PI3K/Akt pathway.

Increased autophagy mechanisms with exercise:   ROS increases with exercise.  Since ROS activates autophagy, this is one mechanism by  which exercise could activate autophagy, but it is unclear if this activates “selective mitochondrial destruction” this way (i.e. mitophagy).

Hypoxia also activates autophagy via a HIF-1a pathway.  This would occur with exercise if you reached your anaerobic threshold during exercise or did IHT exercise (intermittent hypoxia with exercise).

Conclusion:  Exercise can both inhibit and activate autophagy.  This may be why it is difficult to show exactly how exercise prolongs lifespan.

10.  Autophagy exercises anti-aging effects on postmitotic cells.

– There are primarily 5 cytoprotective effects:

  1. Reduced accumulation of toxic protein aggregates, described above
  2. Destroying bad mitochondria via mitophagy, described above
  3. Reduced apoptosis
  4. Reduced necrosis
  5. Improved hormesis

Cells that do not divide are particularly vulnerable to the build-up of protein aggregates seen in neurodegenerative diseases.  Autophagy inducers such as rapamycin, rapalogs, valproate, and lithium have been shown to help in experimental models of Huntington’s disease, tauopathies, Alzheimer’s disease, and Parkinson’s disease.

When mitochondria are defective due to ROS-induced damage, asymmetric fission occurs, allowing for a good mitochondria and a bad mitochondria to “split up”.  The bad mitochondria has a low membrane potential and is tagged by PINK1 and then ubiquinated by Parkin.  At this point, it is recognized by the autophagy system and is destroyed by macroautophagy.

Autophagy also has an anti-apoptotic function in post mitotic cells.   Autophagy helps damaged cells recover and thereby avoid apoptosis.  Autophagy also has an “anti-necrosis” function in post mitotic cells.

Autophagy is also a stress response involving hormesis.  Hormesis is how low (sublethal) doses of cellular stressors result in an up regulation of cellular stress adaptation mechanisms. See the blog entries Multifactorial hormesis II – Powerpoint presentation and Multifactorial Hormesis – the theory and practice of maintaining health and longevityAutophagy has a hormetic dose response curve.  Depending on the strength or duration of the stressor, autophagy or a negative consequence could ensue, as exemplified in this diagram:

hormesis- 2

Image source

11. Anti-aging effects of Autophagy on Proliferating Cells 

– Autophagy has cytoprotective effects and other unique effects in dividing cells:

  1.  Cytoprotective effects – see #10 above
  2. Reduced stem cell attrition
  3. Reduced ROS-induced cellular senescence
  4. Reduced oncogenic transformation
  5. Improved genetic stability
  6. Increased p62 degradation
  7. Anti-cancer effects via increased oncogene-induced senescence and oncogene-induced apoptosis

With aging, there is a decline in bone marrow stem cell function (hematopoeitic stem cells and mesenchymal stem cells) and stem cell number (MSCs only).  Rapamycin restores the self-renewal capability of hematopoietic stem cells (HSCs).  This improves the function of the immune system, of course assuming a lower dose of rapamycin than the immunosuppressive rapamycin dose given for preventing organ transplant rejection.  Rapamycin can also reverse the stem cell loss that occurs in hair follicles and thereby prevent alopecia.  mTOR accelerates cellular senescence by increasing the expression of p16/INK4a, p19/Arf, and p21/Cip1.  These are all markers of cellular senescence and up regulating these tumor suppressors induces cellular senescence.

The tumor suppressor PTEN is just the opposite, however.  Loss of the tumor suppressor PTEN induces a unique type of cellular senescence called “PTEN loss-induced cellular senescence” (PICS).  PICS occurs with mTOR activation and can be reduced by inhibiting MDM2, which leads to an increase in p53 expression.  This would inhibit autophagy. Rapamycin can preclude  permanent (irreversible) cell-cycle arrrest due to inducible p21 expression.  In this aspect, mTOR decreases proliferative potential and mediates stem cell attrition via senescence.  Rapamycin can suppress this.  This effect may be mediated by autophagy or by an autophagy-independent effect of mTOR inhibition.

More importantly, several oncogenes suppress autophagy.  This includes Akt1, PI3K, Bcl-2 family anti-apoptotic proteins.  Most of the proteins that stimulate autophagy also inhibit oncogenesis.  This includes DAPK1, PTEN, TSC1, TSC2, LKB1/STK11, and Beclin-1.  Autophagy can suppress oncogenesis through cell-autonomous effects described below:

  1. Improved quality control of mitochondria (less baseline ROS production)
  2. Enhanced genetic stability
  3. Removal of potentially oncogenic protein p62 via autophagy.
  4. Autophagy up regulation results in oncogene-induced senescence (via Ras)

The diagram below shows the beneficial effects of autophagy on all cell types, specific benefits in proliferating cells, and specific benefits in post-mitotic cells.

 

Kroemer_2

Systemic Anti-Aging Effects of Autophagy   Image source

 12. Autophagy can reduce age-related dysfunction through systemic effects – 

Autophagy also confers several beneficial anti-aging effects that are not due to cytoprotection, or other localized effects within the cell itself.  This includes the following systemic benefits of autophagy:

  1. Defense against infections
  2. Innate immunity
  3. Inhibition of pro-inflammatory signaling
  4. Neuroendocrine effects of autophagy

Autophagy in dying antigen-presenting cells improves the presentation of the antigens to dendritic cells.  In dendritic cells, autophagy improves antigen presentation to T cells.  Autophagy in dying cells is also required for macrophage clearance of these dead/dying cells.   This is how autophagy reduces inflammation.  Autophagy helps keep ATP production going in these dying cells, providing energy for the key step in the lysophosphatidylcholine “find me” signaling as well as the phosphatidylserine “flip flop” that is the “eat me” recognition signal for macrophage ingestion of the dying/dead cells.  By helping macrophages find these cells and recognize that they are ready for macrophage ingestion, these cells do not rupture and spill their intracytoplasmic contents (this is what causes the inflammation with necrosis, where cell membrane rupture occurs).

When autophagy is working hand-in-hand with apoptosis, no inflammation occurs when a cell dies. This is a key beneficial role of autophagy in reducing inflammation.   The decline in autophagy seen in aging may be in part the cause of age-induced type-2 diabetes.  Here the peripheral tissues become insulin resistant.  This may be due to the hepatic suppression of the Atg7 gene, which results in ER stress and insulin resistance.  Induction of autophagy in specific neural populations may be sufficiency to reduce pathological aging.

 

Kroemer_4

More effects of autophagy     Image source

Beyond its cell-autonomous action, autophagy can reduce age-related dysfunctions through systemic effects. Autophagy may contribute to the clearance of intracellular pathogens and the function of antigen-presenting cells (left), reduce inflammation by several mechanisms (middle), or improve the function of neuroendocrine circuits (right).

13.  Autophagy is necessary for maintaining the health of pools of adult stem cells

Frequent readers of this blog know that the writers believe that age-related decline of the health and differentiation capability of adult stem cells and increasing sensescence of those cells may be responsible for many of the effects we associate with aging.  Thus, the positive roles of autophagy in keeping stem cells viable is of great interest to us.

See the comments under 11 above.  Also, the June 2013 review publication Autophagy in stem cells provides “a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells.”  Another such review is the June 2012 e-publication Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging.

stemcellautophagyL

Image Source  “Tightrope act inhibition of mTOR via caloric restriction (CR) or rapamycin induces autophagy. Autophagy clears away damaged proteins and organelles like defective mitochondria, thereby decreasing ROS levels and reducing genomic damage and cellular senescence, thus playing a crucial role in enhancing stem cell longevity. CR may also have a role in maintaining low levels of p16ink4a, a tumor suppressor protein, thus reducing the risk of cancer and promoting proliferation of stem cells. Oncogenesis is countered by loss of PTEN which elicits a p53-dependent prosenescence response to decrease tumorigenesis(ref)”

Only now are studies beginning to emerge that characterize the detailed roles of autophagy in maintaining stem cell health and differentiation viability.  Autophagy in stem cells recapitulates the current state of understanding:  “As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.”

Another very-recent finding related to autophagy and stem cells is reported in the March 31, 2013 paper FIP200 is required for maintenance and differentiation of postnatal neural stem cells.These data reveal that FIP200-mediated autophagy contributes to the maintenance and functions of NSCs through regulation of oxidative state.” FIP200 is “a gene essential for autophagy induction in mammalian cells.”

Exercising control over autophagy may prove useful for efficiently generating induced pluripotent stem cells.  According to the 2012 publication Autophagy in stem cell maintenance and differentiation: “We also discuss a possible role for autophagy during cellular reprogramming and induced pluripotent stem (iPS) cell generation by taking advantage of ATP generation for chromatin remodeling enzyme activity and mitophagy. Finally, the significance of autophagy modulation is discussed in terms of augmenting efficiency of iPS cell generation and differentiation processes.”

A steady stream of research continues to reveal new insights on the roles that autophagy plays in stem cells.  For example, the April 2013 publication FOXO3A directs a protective autophagy program in haematopoietic stem cells reports: “Here we identify autophagy as an essential mechanism protecting HSCs from metabolic stress. We show that mouse HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy after ex vivo cytokine withdrawal and in vivo calorie restriction. We demonstrate that FOXO3A is critical to maintain a gene expression program that poises HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FOXO3A-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.”

14.  Autophagy is a key step in activating the Nrf2 pathway.  And Nrf2 expression can in turn regulate autophagy.

The importance of the Nrf2 stress-response pathway and its role in generating health has been one of the frequent topics of discussion in this blog.  See specifically the blog entries The pivotal role of Nrf2. Part 1, Part 2, Part 3, and Nrf2 and cancer chemoprevention by phytochemicals.  We know now that autophagy plays a key role in Nrf2 activation, via p62-dependent autophagic degradation of Keap1.  See, for example, the 2012 publication Sestrins Activate Nrf2 by Promoting p62-Dependent Autophagic Degradation of Keap1 and Prevent Oxidative Liver DamageWe also know that, in turn, Nrf2 expression can regulate autophagy.  See for example the March 2013 publication Regulation of Cigarette Smoke (CS)-Induced Autophagy by Nrf2.

15.  Autophagy and aging

We are starting to understand why autophagy stops working well when a person grows old – why autophagy does not work as well as you age.  Among the reasons are:

a. Failure to form autophagosomes – with aging, there appears to be a failure for autophagosomes to form, possibly due to macroautophagy enhancers (glucagon).

b. Failure of fusion – with aging, there appears to be a failure of lysosomes to fuse with autophagosomes.

c. Negative signaling from insulin or insulin receptors – with aging, insulin signaling or insulin receptor signaling activates mTOR in cells.

d. Mitophagy does not work as well in aging.

e. Autophagy decline probably also results in energy (ATP production) decline.

16.  Practical interventions to promote autophagy

There are a number of practical ways to promote autophagy.  Specifically, in partial recap of the above:

  • Fasting activates Autophagy –   caloric restriction affects 5 molecular pathways that activate autophagy
  • Sunlight, Vitamin D and Klotho activate Autophagy – there are three ways through which UV light, Vitamin D, and the Klotho pathway activate autophagy via inhibiting the insulin/IGF-1 pathway
  • Rapamycin activates Autophagy – there are two ways through which mTOR inhibitors activate autophagy –  TORC1 and TORC2 mechanisms
  • Caffeine activates Autophagy – Caffeine can activate autophagy via an mTOR-dependent mechanism
  • Green tea activates Autophagy – ECGC can activate autophagy via an mTOR-dependent mechanism
  • Metformin activates Autophagy – metformin can activate autophagy via AMPK activation – mTOR-dependent and mTOR-independent mechanisms
  • Lithium activates Autophagy –  lithium and other compounds can activate autophagy by inhibiting inositol monophosphate and lower IP3 levels – an mTOR-independent mechanism
  • Resveratrol activates Autophagy – there are four 4 ways through which resveratrol can activate autophagy – via mTOR-dependent and mTOR-independent mechanisms
  • Spermidine activates Autophagy – how spermidine activates autophagy via histone protein deacetylation – mTOR-indepdendent mechanism
  • Hypoxia activates Autophagy –  intermittent hypoxia can increase autophagy via HIF-1a
  • Phytosubstances which activate the Nrf2 pathway can activate Autophagy.  These are many and include soy products and hot chili peppers.

In addition, these lesser-known substances can also activate autophagy:

Amiodarone low dose Cytoplasm – midstream yes Calcium channel blocker =>  TORC1 inhibition.  Also, a mTOR-independent autophagy inducer

  • Fluspirilene low dose Cytoplasm – midstream yes Dopamine antagnoists  => mTOR-dependent autophagy induction
  • Penitrem A low dose Cytoplasm – midstream yes high conductance Ca++activated K+ channel inhibitor => mTOR-dependent autophagy inducer
  • Perihexilenelowdose Cytoplasm- midstream yes 1. TORC1 inhibition
  • Niclosamidelowdose Cytoplasm- midstream yes 1. TORC1 inhibition
  • Trehalose 100 mM Cytoplasm – midstream supplement 1. activates autophagy via an mTOR-independent mechanism
  • Torin-1 low dose Cytoplasm – midstream no 1. mTOR inhibition (much more potent than rapamycin)
  • Trifluoperazine low dose Cytoplasm – midstream  yes Dopamine antagonists => mTOR-dependent autophagy induction

Wrapping it up

Here are some of the main points above covered:

  • Autophagy is like having a Pac man inside each of your cells, chasing down, eating up and recycling dysfunctional organelles, proteins and protein aggregates.  It has three forms: i. chaperone-mediated autophagy, ii. microautophagy and iii. macroautophagy.  The last is the most important one.
  • Autophagy is a stress response and behaves according to the principles of hormesis.
  • Autophagy can retire and eat up old mitochondria which have become electron-leaking engines.
  • Autophagy solves the problem of high baseline levels of reactive oxygen and nitrogen species.
  • Autophagy  does not require proteins to be unfolded for it to work and therefore can perform housekeeping tasks undoable by the other cell-level house cleaning system, the ubiquitin-proteasome system.
  • Autophagy gets rid of the protein aggregates that can make you loose your memory or walk slow as you grow old – those associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, ALS, CTE, and other neurodegenerative conditions.
  • Autophagy keeps adult stem cells healthy and facilitates their capability to differentiate to make normal somatic body cells.
  • Autophagy prevents inflammation – it works hand-in-hand with apoptosis to help the body get rid of dying cells without inducing cell rupture and inflammation.
  • Autophagy prevents cancer – it helps maintain genetic stability, prevents epigenetic gene silencing.  And it helps promote oncogene-induced cellular senescence for cancer prevention.
  • Autophagy saves the lives of cells by preventing unnecessary cellular apoptosis and cell necrosis.
  • Autophagy is involved in Nrf2 activation and to some extent Nrf2 expression negatively regulates autophagy.
  • Autophagy keeps your bone marrow stem cell population alive and functional.
  • Autophagy helps with infections – it helps clear intracellular pathogens such as bacteria and viruses.
  • Autophagy improves the innate immune response.
  • We are starting to understand why autophagy declines with aging.
  • While autophagy declines with aging, it can exercise multiple effects to slow aging down.  It inhibits the major mechanisms of aging such as cellular senescence, protein aggregate build-up, stem cell loss, epigenetic gene silencing, telomere shortening, and oxidative damage to proteins, lipids, and DNA.
  • There are many practical ways to activate Autophagy like consuming green tea and caffeine, and some less-practical ones.

 

 

About James Watson

I am a physician with a keen interest in the molecular biology of aging. I have specific interests in the theories of antagonistic pleiotropy and hormesis as frameworks to understand cellular senescence and mechanisms for coping with cellular stress. The hormetic “stressors” that I am interested in exploiting at low doses include exercise, hypoxia, intermittent caloric restriction, radiation, etc. I also have a very strong interest in the epigenetic theory of aging and pharmacologic/dietary maintenance of histone acetylation and DNA methylation with age. I also am working on pharmacologic methods to destroy senescent cells and to reactivate quiescent endogenous stem cells. In cases where there is a “stem cell exhaustion” in the specific niche, I am very interested in stem cell therapy (Ex: OA)

Source: Autophagy – the housekeeper in every cell that fights aging | AGINGSCIENCES™ – Anti-Aging Firewalls™

Encinitas in 2013 passed Proposition A, which mandates that voters must weigh in on any land-use changes in the city. Meanwhile, every city in California is required to update its housing element, a plan that shows how it will meet the growing demand for housing, every four years

But now AGENDA 21 is coming to town just like in every city in the USA.  Crowding is required while land on the outskirts is devalued and forced into non use by environmentalists.

The prospect of building more homes is unpopular in all crowded communities, Encinitas included. Yet the city needs to demonstrate where it can build 1,200 housing units, its share of regional growth expectations.

Encinitas is now in a tough legal position. Local voters could reject the city’s plan to accommodate new housing – a plan required by state law.

”The court might very well say, ‘I don’t know that Prop. A is legal when it tries to stand in the way of something that you’re required by law to do,” Durkee said. “But if you can make it work, and you can secure (voter) support, then I don’t have a problem with you having done that, because it’s an issue that took care of itself.”

Legal trouble over housing law is nothing new for Encinitas. Developer David Meyers is already suing the cityit for not implementing a separate state law that lets developers build more homes on a property if the project includes low-income homes.

Meyers has now amended his lawsuit to include the discrepancy between Prop. A and the state’s housing element law.

Prop. A can’t keep the city from making good on a state requirement, he argues.

“You need to get it done, and you don’t need a vote of the people,” Meyers said. “You could have a vote, but it would only be advisory.”

Specifically, Meyers contends that state mandates trump local initiatives, like Prop. A.

Encinitas already abandoned one attempt to meet the mandate before a 2013 deadline, over dissatisfaction with specific areas a consultant suggested could be targeted for new development. It’s the only city in the county, and one of a few in the state, without a legal housing plan.

Missing that deadline exposed the city to lawsuits. In 2015, Encinitas settled a lawsuit with the Building Industry Association, which said the city needed to put an update on the November 2016 ballot, or give up its authority to issue building permits.

Meyers didn’t agree with the settlement. Putting the housing element to voter approval is as good as ignoring state law, he said.

“Do I think if it’s subject to voter approval it has a prayer? No, it doesn’t have a prayer,” Meyers said.

At one point, city staff proposed exempting housing element updates from the city’s requirement for voter approval. Staff removed that language after hearing from residents.

“The former draft zoning standards and land use element did suggest an exception to the voter requirement, and it did at one time suggest at one time that a supermajority of Council could make subsequent amendments without the need to go to a vote of the people,” planner Michael Strong said at a June 15 hearing.

This is the first time the city will send a housing element plan to the ballot. Two of the proposed changes in the plan are drawing widespread criticism from voters, especially those in Cardiff.

Hence, the uncertainty.

One of the unpopular changes is based on a guideline to build housing for lower-income residents more densely.

Ghettos are going to be built in Encinitas!

The second change would raise the maximum building height to three stories in certain areas, lifting a two-story limit that was established by Prop. A.

The city previously tried to get creative with solutions for providing affordable units, which would have limited the number of properties that needed the taller, denser buildings.

That was a so-called granny flat program that tried to encourage homeowners to bring illegal, additional units on their properties up to code so they would count as affordable housing. But the granny-flat idea was a flop.

Fourteen distinct sites are targeted for the new zoning in the plan that will go to voters, including one in Cardiff where the City Council removed the three-story height increase over objections from residents.

Those sites were chosen through a two-year process of community meetings and workshops, and some of the sites that were originally designated for upzoning were removed from the final map after residents protested.

Durkee, the land-use law attorney, said at the Council meeting that he’s supportive of sending the draft to voters, but it’s unlikely that a defeat at the ballot box is the end of the process.

The environmental lobby will sue them into submission.

“Ultimately, I don’t think the vote, if it’s no, will be the last, and ‘My goodness, we dodged a bullet and can go back to business as usual,’” he said.

If voters approve the plan, state housing authorities will then check that it doesn’t constrain development. Strong said state approval would also mean the city would need to update its climate action plan to be consistent with the housing element within 20 months.

That, too, could trigger another vote under Prop. A, but Strong said he believed the timeline was achievable.

Still, Meyers said a plan that can win support from development-averse voters probably isn’t one that will actually attract developers to build the new homes envisioned in the plan.

“The question is: Is the (plan) that’s being pushed capable of being built at the density they’re proposing,” he said. “I have great doubt.”

Soylent green is going to be made of people…..

This article relates to: Growth and Housing, Housing, Land Use

Written by Ruarri Serpa

Ruarri Serpa is a freelance writer in Oceanside. Email him at ruarris@gmail.com and find him on Twitter at @RuarriS.

Encinitas has placed itself in a tough legal position. Local voters could reject the city’s plan to accommodate new housing – a plan required by state law. Encinitas is the only city in the county, and one of a few in the state, without a legal housing plan.

Source: Encinitas’ Conundrum: Obey Its Own Law, or California Law? – Voice of San Diego

Source: A simple, comprehensive plan to prevent or reverse Alzheimer’s Disease and other neurodegenerative diseases – Part 1: The Plan | AGINGSCIENCES™ – Anti-Aging Firewalls™

 

A simple, comprehensive plan to prevent or reverse Alzheimer’s Disease and other neurodegenerative diseases – Part 1: The Plan

By James P Watson, with contributions and editorial assistance by Vince Giuliano

 INTRODUCTION AND OVERALL PRINCIPLES

This is the first of a pair of blog entries concerned with dementias – neurological diseases including Alzheimer’s Disease (AD) and its cousins.  This Part 1 write-up was inspired by a recent small, non-randomized clinical trial done by Dr. Dale Bredesen that showed true “Reversal of Cognitive Decline” in 9 out of 10 patients with documented cognitive decline (Bredesen, 2014).  Not all of these patients had AD, but all had cognitive decline.  Five had AD, two had SCI (subjective cognitive impairment), and two had MCI (mild cognitive impairment).  Although this study was too small to allow any statistical conclusions, it is the most positive report in a series of disappointing reports on the recent failures of Big Pharma’s monoclonal antibodies against amyloid-beta.  Dale Bredesen’s approach was a multifactorial one – utilizing 24 different approaches to halt or reverse cognitive decline.  We explore those 25 interventions here, focusing on the first 19.  They do not depend on drugs.   The focus of this blog entry is “What can be done about dementias now?”

The forthcoming Part 2 blog entry will provides a detailed discussion of some of the key science related to AD and dementias.  This is the “What is science telling us about dementias?” part which gets quite complex.  We review major theories related to AD there including the Hardy Hypothesis related to amloid beta, the GSK3 theory and more detail on the neuroinflammation theory which we introduce in this Part 1 blog entry.  We expect to emphasize the emerging importance APP (Amloid Precursor Protein).  And we will describe some very recent research that appears to establish that a basic cause of AD is the proliferation in aging of vestigal DNA segments in our genomes (known as LINEs which are long interspersed nuclear elements and SINEs which are short interspersed nuclear elements) with encode over and over again for the production of APP and for the failure of its clearance.  This could well finally explain the role of beta amyloid in AD.

We have published a number of earlier blog entries relating to AD and dementias.  For example, you might want to review my August 2014 blog entry The Amyloid Beta face of Alzheimer’s Disease.

About dementias

Dementia only happens to a minority of the population with aging, but is becoming an ever increasing problem with the explosion in longevity occurring world-wide

Cognitive decline is the major “fear” people have of getting old.  Even individuals with the feared “ApoE4 polymorphism” are not “predestined” to develop Alzheimer’s Disease (AD).  The ApoE4 allele is only a “risk factor” for AD, not the cause of AD.

A common error is that most people view “dementia” and “Alzheimer’s disease” as synonyms, but this is incorrect.  Alzheimer’s disease is only responsible for 60% of cases of dementia in the US and even less of the cases in Japan.  In the US,  Vascular Dementia (VaD) is the second-most common cause of dementia (20%), whereas in Japan, the incidence of AD and VaD is almost the same.  In the US, the remaining 20% of dementia cases are due to several other neurodegenerative diseases such as Lewy Body Dementia (LBD), Parkinson’s disease with dementia (PDwithD), Frontotemporal dementia/ALS spectrum disorder (FTD/ALS), and mixed dementia (which is usually a mixture of AD and VaD).

A portrayal of the breakdown follows.

Image source

In the Middle East and China, VaD is more common than AD.  This was true in Japan two decades ago, but now the ratio of AD to VaD is 1:1.  Since AD and VaD are clearly the leading causes of dementia world-wide, we will focus mostly on these two types of dementia.  Also, the risk factors for AD and VaD overlap and there are cases of “mixed dementia” which include features of both diseases.  AD affects 5.4 million Americans and 30 million globally.  By 2050, these numbers will be 13 million (US) and 160 million (world-wide) (Ferri, 2005). Many experts now regard dementia from neurodegenerative diseases as the 3rd leading cause of death after cardiovascular disease and cancer.  Despite millions of dollars being spent annually on research, the exact causes of these dementias are still unknown, but the number of clues to the causes is growing and we will explore some of the main ones in our Part 2 blog entry.

Neuroinflammation is the most universally accepted explanation for AD

What is clear is that the “universal sign” of all neurodegenerative disease is “neuroinflammation”, which under the microscope is manifested as “gliosis” and is seen with AD, VaD, PD, FTD/ALS, and the type of dementia seen after multiple concussions, which is now called “Chronic Traumatic Encephalopathy” (CTE).  Although they all have different “triggers” for each disease, they all have “neuroinflammation” and histologic signs of gliosis.  We return to neuroinflammation several times as a central theme here and in the Part 2 blog entries.

Another “universal feature” is that all of these disease have familial cases with as few as 5% being genetic (AD) and as many as 50% being genetic (FTD).  In these familial cases, there is most often a genetic mutation that is causal in nature (early onset disease) or a single nucleotide polymorphism (SNP) that is not causal in nature, but predisposes the patient to the disease.   With the exception of CTE (where the primary cause is multiple concussions) and PD (where pesticide exposure, family history of PD, and depression combine to produce an odds ratio OR = 12.0), most of the cases of neurodegenerative dementias remain largely sporadic with unknown specific causation.

Environmental risk factors for neurodegenerative diseases are discussed in the 2005 publication Neurodegenerative Diseases: An Overview of Environmental Risk Factors  and in publications in this list.

Despite millions of dollars being spent annually on research, the exact cause of these dementias are still unknown, but the number of clues to the cause is growing.  What is clear is that the “universal sign” of these neurodegenerative diseases is “neuroinflammation”, which under the microscope is manifested as  “gliosis” and is seen with  AD, VaD, PD, FTD/ALS, and the type of dementia seen after multiple concussions, which is now called “Chronic Traumatic Encephalopathy” (CTE).  Although they all have different “triggers” for each disease, they all have “neuroinflammation” and histologic signs of gliosis.  Another “universal feature” is that all of these disease have familial cases with as few as 5% being genetic (AD) and as many as 50% being genetic (FTD).  In these familial cases, there is most often a genetic mutation that is causal in nature (early onset disease) or a single nucleotide polymorphism (SNP) that is not causal in nature, but predisposes the patient to the disease.

With the exception of CTE (where the primary cause is multiple concussions) and PD (where pesticide exposure, family history of PD, and depression combine to produce an odds ratio OR = 12.0), most of the cases of neurodegenerative dementias remain largely sporadic with unknown specific causation.

Failure of Monotherapeutic Approaches to Neurodegeneration – It is time to consider multiple component therapies

The development of drugs to treat neurodegeneration has probably been the biggest failure of the pharmaceutical industry.  Although there are three FDA-approved drugs for AD, none of them produce anything other than a marginal, unsustained effect on symptoms.  Hundreds of clinical trials for AD have failed over the past two decades, most recently being the large Phase III trials of monoclonal antibodies that target amyloid-beta.  As of today, no drugs have been approved for Frontotemporal dementia, Vascular dementia, and Lewy body dementia.  Only one drug has been approved for Amyotrophic lateral sclerosis (ALS).  All of the clinical trials done for these diseases have largely been with monotherapeutic drug approaches.

We know from the field of cardiovascular disease, cancer, and HIV that single drug therapy for these diseases largely fail.  .  It is now clear that cancer is “incurable” with chemotherapy unless multiple drugs are used.  Combination therapies have become the standard for treating these conditions.  The requirement to combine drug therapies appears to pertain as well to diseases that we cannot “cure” but that are are yet treatable:  we can control the disease and prevent premature death from the disease.  This includes cardiovascular disease, HIV, and a few other glaring chronic diseases.  These diseases like dementias involve simultaneous upregulation or downregulation of hundreds or thousands of genes including protein-producing ones, and simultaneous activation or inhibition of a large multiplicity of pathway.  It is a very tall order to find a single molecule that can have the right effects on so very many different upregulated and downregulated molecules and pathways at the same time.  Yet, Big Pharma by tradition and because of patent law likes to look for single molecules that can be patented and that can make a big differences in a key step in a highly specific disease processes.  But most serious aging-related diseases and dementias don’t offer such an opportunity.

The Multi-factorial approach rather than “single target” approaches to Treating Alzheimer’s Disease

For the same reasons, it makes sense that a single drug made by “Big Pharma” could NOT solve the problems with these neurodegenerative diseases.  Here is a list of 25 different interventions that were combined into one effective program that “reversed” AD in 9 of 10 patients treated in a pilot study at UCLA and the Buck Institute.  None of these involve drugs.  I will include in black, the ones that were recommended by Dr. Dale Bredesen in what he calls the “MEND” program, which is an acronym that stands for “Metabolic Enhancement for NeuroDegeneration”.  You can check out his 2014 paper Reversal of cognitive decline: A novel therapeutic program.

SECTION I PRACTICAL INTERVENTIONS

1.  Eat a low glycemic, low inflammatory, low grain diet – Since sugar triggers insulin release and the insulin receptor triggers brain aging, this is easy to understand. For several complex reasons, certain proteins found only in grains (such as wheat germ, wheat gliadins) also triggers inflammation. The foods that have a high glycemic index or have lots of wheat in them include the following:

High glycemic index foods (these are bad) (and pro-inflammatory nonglycemic foods) Low glycemic index foods (these are good) (and anti-inflammatory foods and beverages)
Sweet Fruit – banannas, oranges, grapefuit Fatty fruit – avocadoes, olives, capers
Orange juice, Apple juice, grape juice Unsweetened coconut milk, soymilk, almond milk
Pancakes, waffles, French toast, toast Scrambled eggs, omelettes, boiled eggs, fried eggs
Candy, Pies, Cake, Ice cream, Sherbert Vegetables – Broccoli, Brussel sprouts, Artichokes
Corn bread, Cornflakes, corn oil Olive oil, Coconut oil extract (MCT oil)
Processed cold cereals – Chex, Raisin bran Oatmeal, barley cereal, rye bread, etc.
   Cream of wheat, Fruit loops, etc. Mushrooms, seaweed (Sushi), cheese, butter
Toast, bread, donuts, bagels, croissants tomato soup (add some protein), mushroom soup
Potatoes, potato chips, French fries Cream of broccoli soup, lentils, legumes
Sweetened yogurt, sweetened milk Unsweetened yogurt, Greek yogurt
Cow’s milk, Chocolate milk, hot cocoa Prosage patties, garden burgers, vegelinks
Jam, jelly, honey, maple syrup, pancake syrup Soymeat, tofu, vegameat, Frichick
Peanut butter, Jam, and bread sandwiches Portobello  mushroom sandwiches w/o bread
White rice, brown rice, pita bread, wild rice Indian curries (leave out the potatoes), Thai curry
Wheat thins, Pretzels, wheat snacks Dried kale chips, seaweed snacks, onion snacks
Sugar drinks, sweetened tea, Gatoraid Green tea, white tea (no caffeine), herbal teas

2.   Enhance autophagy – This can be done without fasting all day.  Research has shown that fasting for at least 12 hours per day (evening and night) is sufficient to activate autophagy.  Not eating for at least 3 hours before bedtime also activates autophagy.  Eating the evening meal earlier in the day also helps.  For those who do not want to fast for at least 12 hours, there may be little hope of “cleaning the cobwebs out of the brain”.  Studies have shown that eating too much or eating late at night completely shuts off autophagy.  This is probably the #1 reason why most people have so much “proteotoxicity” in the brain, the pancreas, and other organs.  You can review our blog entry Autophagy – the housekeeper in every cell that fights aging.

There are some natural compounds and some drugs that stimulate autophagy, however. They include the following:

  • mTOR inhibitors – The mTOR pathway is “downstream” from the Insulin/IGF-1 pathway. The mTOR pathway completely “shuts off” autophagy and stimulates protein synthesis. This is the primary “danger” of eating too much meat or protein (i.e. stimulating the mTOR pathway).  Continually inhibiting the mTOR pathway is probably not a good idea either, since it is very important to synthesize proteins.  However, intermittent mTOR pathway inhibition has been shown to be a very effective way of stimulating “cellular housekeeping” in the brain. The best-known drug that inhibits the mTOR pathway ia rapamycin.  Low glucose levels and low amino acid levels in the blood also inhibit mTOR.  It is interesting that at least one big pharma company, Novartis,  is interested in marketing rapamycin as an anti-aging drug(ref).
  • AMPK activators – The AMPK pathway is one of the major pathways that activates autophagy. AMPK is activated by both exercise and fasting. The AMPK pathway is a “cross-talk” pathway between mTOR and the Insulin/IGF-1 pathway.  Activating AMPK inhibits both of these “bad” pathways. (They are only bad in certain contexts of aging and still serve important functions in aging people.  We could not be alive without them.  In the Part 2 blog entry we will talk about how some times IGF is the good guy we don’t want to be without.)  Besides exercise and fasting, AMPK can be stimulated by three hormones, some drugs and many natural compounds. The most potent AMPK activator is muscle contraction (i.e. exercise). The three hormones that stimulate AMPK are thyroid hormone and two hormones secreted from fat: leptin and adiponectin. Next to this, the most potent chemical activators of AMPK are probably AICAR and ZMP. These are synthetic compounds that are the only true “exercise mimetics”.  ZMP is a derivative of AICAR.  AICAR has been shown to increase endurance in rodents by 44% without exercise.  This is amazing.  Combining AICAR with exercise makes the drug even more effective. Unfortunately, AICAR is very expensive ($350-450/gram).  Common drugs that activate AMPK include metformin and aspirin.  Natural compounds that activated AMPK include resveratrol, pterostilbene, curcumin, EGCG,  betulinic acid, Gynostemma Pentaphyllum, Trans-Tiliroside (from rose hips), and 3-phosphoglycerate.  See this list for articles in this blog that deal with autophagy or describe autophagy activators.
  • Sirtuin activators – The 3rd major family of pathways that activates autophagy is for the Sirtuin enzymes (SIRT1-7). Sirtuins are enzymes that remove acetyl groups from proteins. The most important ones it deacetylates for autophagy are 3 proteins that are crucial to the autophagy system of “cellular housekeeping”.  These 3 proteins are Atg5, Atg7, and Atg8. There are many practical reasons why activating Sirtuin-induced autophagy is critical to health.  For instance, SIRT1 activation protects cells in human degenerative discs from death by promoting autophagy.  This is why fasting has been shown to eliminate back pain. The most well-known SIRT1 activator is resveratrol, the active ingredient in red wine.  However, both red wine and white wine have been shown to activate Sirtuin enzymes.  NAD+, NMN, and NR all activate Sirtuin enzymes (all 7 of them), whereas resveratrol only activates SIRT1.   You can see our blog entry NAD+ an emerging framework for health and life extension — Part 1: The NAD World

3.   Reduce stress – psychological stress, depression, worrying, and being obsessive compulsive all increase the risk of Alzheimer’s disease. The most effective ways to reduce “cellular stress” are as follows:

  • Yoga – yoga has been scientifically proven to reduce stress. The mechanism may be multifactorial, but studies suggest that activating stretch receptors in the muscles induces the SIRT3 gene.  The Sirtuin pathway is a major pathway activated by fasting, caloric restriction, red wine, NAD+, NMN, NR, and certain other natural compounds.
  • Meditation – meditation has been scientifically prove to reduce stress. However, 3 minutes of prayer is NOT meditation. Meditation requires 30-60 minutes of time. The MEND program recommends 20 minutes of meditation twice a day (No one prays that long).
  • Tai chi – this ancient Chinese form of exercise has been shown to reduce stress
  • Exercise followed by rest – exercise alone does not reduce stress, but exercise followed by a good night’s rest is very effective at reducing stress
  • Stretching exercises – These have a special beneficial effect on stress, especially back stretching exercises for back pain.

Self-monitoring of daily stress and exercise can be helpful for knowing what your stress levels are and how good a job you are doing at keeping stress at non-harmful levels.  A great many of the upstream conditions that can lead to dementias mentioned here (sedentary life style, improper diet, inadequate sleep, etc) are likely to induce constitutional stress which can be picked up by such monitoring.  A host of new wearable devices can keep track of exercise and its consequences.  See the blog entry Digital health – health and fitness wearables, apps and platforms – implications for assessing health and longevity interventions – Part 1.  Vince has identified two constitutional stress measurements in his blog entry that can be tracked starting with smartwatch heart rate and sleep measurements, MRHR (morning resting heart rate before awakening), and ERHR-MRHR (difference between evening resting heart rate and morning resting heart rate during sleep, a measure of overnight sleep-related constitutional stress recovery),.  These are described in the blog entry Digital health – health and fitness wearables, Part 2: looking for practical stress biomarkersAlso, heart rate variability is another personally trackable constitutional measurement of stress,  See my recent blog entry on heart rate variability, Digital Health Part 3.

4.    Optimize sleep – At least 8 hours of sleep at night is very effective in preventing Alzheimer’s disease.

Daytime sleeping probably is not as effective, but is probably not harmful provided that a person is not too sedentary with daytime sleeping (i.e. short naps).  Adding 0.5 – 3 mg of melatonin and 500 mg of tryptophan is also very helpful in getting a good night’s sleep.  One of the biggest problems with getting a good night’s sleep is sleep apnea, which is actually very common as we get older.

An external file that holds a picture, illustration, etc.<br /><br /><br /><br /><br /><br /><br /><br />
Object name is fnagi-06-00325-g0002.jpg

 

“A Simplified schematic of the proposed interventions that may have potential to delay AD pathogenesis — The green arrows indicate pathways for improved circadian regulation and sleep quality, ultimately delaying AD pathogenesis. According to this model, chronobiotics (i.e., bright light therapy (BLT); melatonin; exercise; and food restriction) and good sleep hygiene could be used individually—but preferably in combination—to improve circadian regulation and sleep quality, decrease inflammation and Aβ deposition, and thereby delay AD pathogenesis.”  Image and legend source

5.   Exercise – The World Health Organization recommends 150 minutes of exercise per week, but the best scientific evidence suggests that this is NOT enough. The best scientific evidence suggests at least 450 minutes of exercise per week.  That is 60 minutes per day and an extra 20 minutes on one of those days.  If you want to skip Saturday, that means 75 minutes per day (1hr 15 minutes).  The exercise should include the following for preventing Alzheimer’s disease:

  • Swimming, outdoor hiking, calisthenics, aerobic fitness classes, spinning classes, etc.
  • 30-45 minutes of aerobic exercise where the heart rate is 60% of training heart rate.  This can be on a stationary bicycle, an elipical machine, a “hand bicycle”, a stair climber,
  • 1 mile per day of walking outside (the speed is not important)
  • Resistance exercise – this includes weight lifting, machines, stretch bands, push-ups, etc.
  • Stretching – stretching activates stretch receptors which activates the SIRT3 gene, which is key for mitochondrial function and decreasing free radicals in the muscles (which cause pain
  • Listening to relaxing music – classical music listening is a good way to relax.

Watching TV or looking at a computer screen and “surfing on the computer” probably does NOT work to reduce cellular stress.  Here are some of the blog entries we have published relating to exercise.

6.   Brain stimulation – The Mayo Clinic did a study in 487 patients where they participated in a computerized cognitive training program called “Brain Fitness Program” by Posit Science. This computer training required 1 hour of time per day, 5 days per week for 8 weeks (totaling 40 hours). This was called the IMPACT study.  This program increased their auditory processing speed by 131% and improved their memory an equivalent of approximately 10 years!  Here is some information on this inexpensive computer program:

Some of us think that we may keep our brains fit by constantly trying to figure out the mechanisms of aging.

7.  Keep your homocysteine low – High homocysteine levels seem to correlate with inflammation and also with deficiencies in folate cycle intermediates. The MEND program recommendation is to check your homocysteine levels and if it is > 7, then to take methyl-B12, methyltetrahydrofolate, pyridoxal-5-phosphate, and trimethylglycine (if necessary). The dosages are: Methyltetrahydrofolate – 0.8 mg/day and Pyridoxine-5-phosphate –  50 mg/day

8.   Keep your vitamin B12 high – Vitamin B12 is very important in memory and prevention of dementia. Vit B12 deficiency alone can cause dementia. It is easier to prevent than to reverse.  The MEND program recommends taking methyl-B12, not regular B12. They recommend basing the dose of methyl-B12 on serum levels of B12, which they recommend keeping above 500 with 1mg of methylB12/day.

9.  Keep your C-reactive protein low – CRP is a measure of inflammation. This correlates very well with inflammation in the brain (called neuroinflammation).  They recommend keeping the CRP levels below 1.0 and the Albumin/globulin ratio > 1.5.  There are no FDA-approved drugs that lower this which are safe to be used on a chronic basis.  However, there are several natural products that are effective in reducing C-reactive protein (CRP).  They include curcumin (400 mg/day), Fish oil (DHA & EPA), and an anti-inflammatory diet that is low in sugar and wheat products.  The MEND program recommends 700 mg of DHA twice a day (total 1400 mg) and 500 mg of EPA twice a day (total 1,000 mg).  Since most Fish oil capsules are only about 1/3rd omega-3 fatty acids, that means you need to take about 7,000-8,000 mg (i.e. 7-8 one gram capsules) per day of Fish oil.

10.   Keep your fasting insulin low – Most people develop insulin resistance with aging. Unfortunately, this is rarely diagnosed until they have already suffered the consequences of insulin resistance, which include metabolic syndrome, hypertriglyceridemia, hypercholesterolemia, Alzheimer’s disease osteoarthritis, accelerated hearing loss, accelerated visual impairment (including presbyopia, cataracts, and age-related macular degeneration, aka AMD).  Once these things occur, then reducing your fasting insulin no longer is useful – the cells are already dead!  The MEND program recommends keeping your fasting insulin to < 7.0.  The best way to do this is to eat a low glycemic index diet, encourage ketogenesis by 12 hours of fasting per day, exercise, sleep, and in some cases the drug metformin.  We have found that the NAD precursor, NMN is effective in reducing fasting insulin levels.  Other supplements designed to enhance NAD+ may help as well.

11.   Hormone balancing – The MEND program recommends normalizing thyroid hormone levels (free T3, free T4, estrogen, testosterone, progesterone, pregnenolone, and cortisol). For most people, cortisol levels are way too high.  The best way to reduce cortisol is to reduce stress, improve sleep, and also possibly to supplement with NMN or NR.  The rest of the hormones decline with aging and often need replacement. Here are some ways to make this safe:

  • Testosterone replacement therapy – this is risky in older men, due to the risks of accelerated coronary artery narrowing due to neointimal hyperplasia, as well as benign prostatic hypertrophy worsening or by making prostate cancer grow. For this reason, a thorough work-up for prostate cancer must be done before starting testosterone. In addition, testosterone dosing should be based on testosterone levels.
  • Progesterone – This is primarily for women, but also helps men in low doses. Any progesterone replacement therapy should also be based on blood levels of progesterone.
  • Pregnenolone – This helps both men and women for the brain.
  • Estradiol (E2) – This should also be done based on blood levels of E2

12.   Healthy gut bacteria – Most people have very unhealthy gut bacteria due to the use of antibiotics, due to general anesthesia, and due to dietary factors such as a high sugar diet. As a result, the lactobacillus that are good for your health often die.  In addition, the fiber-fermenting bacteria are often absent, thereby eliminating the healthful effects of a high fiber diet.  Probiotics and prebiotics are often helpful in restoring healthy gut bacteria.  You can see Vince’s 2012 blog entry Gut microbiota, probiotics, prebiotics and synbiotics – keys to health and longevity.

13.   Reducing amyloid beta aggregates – One of the hallmarks of Alzheimer’s disease is the accumulation of misfolded, aggregates of a protein called amyloid beta. Fortunately, there are two natural compounds that if taken in large quantities can reduce amyloid-beta plaques in the brain.  They are Ashwagandha and curcumin.  Both of these are effective in reducing amyloid beta plaques.  The MEND program recommend doses of 500 mg for Ashwagandha and 400 mg for curcumin.  Because curcumin is so poorly absorbed, it is better to take a liposomal or nanoparticle form of the curcumin, like Bio-curcumin 95. Curcumin can be taking as a pill, but it may be absorbed much better in curry that has coconut oil, since the coconut oil creates an emultion and micelles which can be absorbed by the lymphatic system and thereby “bypass” the liver and the “first pass effect”.   Ashwagandha is much better absorbed and does not have as much of a problem. It can be taken as a pill, but also can be taken as a tea.   My friend Dr. Vince Giuliano has made a liposomal form of these two compounds together with two complementary anti-inflammatory herbal extracts which he believes get into the blood stream in concentrations that are 8-10 times higher than by pill form.  He has written about these and other phytosubstances a number of times, e.g.(ref) (ref) (ref) (ref) (ref).

14.   Cognitive enhancement – This category was probably added to the MEND program for supplements that could not be categorized elsewhere. They specifically recommend the natural product called Bacopa monniera and Magnesium. Bacopa monnieri is also called “water hyssop”, “herb of grace”, “Indian pennywort” and Withania somnifera.  Bacopa monniera has been shown to reduce amyloid plaque and prevent synaptic decline in mouse models of AD.  One possible mechanism by which Bacopa monnieri works is to enhance LDL receptor-related protein, which is the “amyloid exporter” in the brain.  There are many studies that show a benefit from Bacopa monniera In humans. A meta-analysis of 6 high quality clinical trials of Bacopa monniera showed that 9 out of 17 tests showed improved performance in the domain of “memory free recall”. In a study on Okadaic acid induced memory impaired rats, the effect of standardized extract of Bacopa monnieri and Melatonin on the Nrf2 pathway was investigated.  “OKA caused a significant memory deficit with oxidative stress, neuroinflammation, and neuronal loss which was concomitant with attenuated expression of Nrf2, HO1, and GCLC. Treatment with BM and Melatonin significantly improved memory dysfunction in OKA rats as shown by decreased latency time and path length. The treatments also restored Nrf2, HO1, and GCLC expressions and decreased oxidative stress, neuroinflammation, and neuronal loss. Thus strengthening the endogenous defense through Nrf2 modulation plays a key role in the protective effect of BM and Melatonin in OKA induced memory impairment in rats.” There is a special form of magnesium which is much better incorporated into the cell called Magnesium-L-threonate, aka MgT.  Both can be taken as a capsule.  The dose Bacopa monniera they recommend is 250 mg/day. However, most of the clinical trials recommend dosages of 300-450 mg/day.

15.  Vitamin D3 –Vitamin D3 seems to be quite different than the other vitamins for a variety of reasons. The most important difference is that Vitamin D levels should be checked and individuals need to adjust their dose based on their serum vitamin D3 levels. To prevent AD, the levels of Vitamin D3 need to be > 50 nmol/L.  The strongest evidence for this comes from two recent studies from 2014.  One was a 5 year study in 1,658 elderly patients who started the study with no dementia. During the 5 years, 171 of the 1,658 developed dementia (10% risk over 5 years).  This study looked at “all cause dementia”, of which 90% is Alzheimer’s dementia (AD) and Vascular dementia (VD).  The risk of developing dementia when serum Vitamin D3 levels were > 50 nmol/L was very low.  However, those with Vit D3  levels between 25 and 50 nmol/L had a 1.53 fold higher risk of developing dementia of any type.  Those with levels below 25 nmol/L had a 2.25 nmol higher risk of developing dementia of any type.  The 2nd study reported in 2014 was from Denmark and followed 10,186 individuals in the Danish population for 30 years.  They looked at the risk of specific kinds of dementia and the relationship to Vitamin D3.  For Alzheimer’s disease (AD), the risk of AD type dementia was 1.25-1.29 fold higher in those with serum Vit D3 levels below 25 nmol/L.  For Vascular Dementia (VD), the risk of VD type dementia was 1.22 fold higher in those with serum Vit D3 levels below 25 nmol/L.  In conclusion, low Vitamin D3 levels is one of the largest risk factors for dementia and the easiest to prevent.  Most people do not get their Vitamin D3 levels checked.  Do you know what yours is?

16.   Increasing Nerve Growth Factor (NGF) Hericium erinaceus and ALCAR — Although there are many growth factors that make nerve cells grow, the most important one is probably Nerve Growth Factor (NGF).  NGF is a growth factor made and secreted by astrocytes in the brain and spinal cord.  NGF enhances neuronal stem cell regeneration of the brain.  Exercise is a potent stimulator of NGF secretion. There are several natural compounds that stimulate nerve growth factor secretion.  They include extracts from the mushroom, Hericium erinaceus. Although there are other edible mushrooms that are good for you, of the 4 edible mushrooms that were studied for their effect on NGF secretion, only Hericium erinaceus induced the secretion of NGF from human astrocytes in the Hippocampus of the brain.  Another compound that stimulates the secretion of NGF is Acetyl-L-carnitine, aka ALCAR.  Acetyl-L-carnitine also helps with neuropathic pain.   In rodent models of Alzheimer’s disease, 150 mg/kg/day of ALCAR induced NGF secretion and increased choline acetyltransferase activity, which increasea acetylcholine levels in the hippocampus.

17.   Provide the substrates for synaptic formation uridine, choline, citocolin, DHA, EPA, and herring roe — The ability to form synaptic connections between neurons is a key part of forming memory. Several key molecules are needed to create these synapses and dendritic spines that are not made by the human body (e.g. DHA) or are made in inadequate amounts (e.g. citicoline).   The omega-3 fatty acid called docosahexaenoic acid (DHA) is probably the “rate-limiting substrate” in the formation of presynaptic and postsynaptic proteins.  DHA alone will increase the formation of synapses and increase cognitive performance in humans and experimental animals, but the addition of two other circulating precursors for phosphatidylcholine also enhance memory formation.  These two other precursors are uridine (which gives rise to brain UTP and CTP) and choline (which gives rise to phosphocholine).   Phosphatidylcholine (PC) is the major phosphatide found in human neuronal connections. The other two major synaptic ingredients are uridine and DHA.  Studies have shown that the aministration of choline, uridine, and DHA together have a greater effect than the sum of the individual effects (i.e. they have a synergistic effect on generating synapses and dendritic spines). DHA alone increased the synthesis of hippocampal phospholipids by 8-75%, with the greatest percentage being in the synthesis if PC (phosphatidylcholine).  There are still controversies as to how much DHA a person should take per day.

The MEND program recommends 320 mg of DHA/day, but other experts recommend as much as 2,000 mg/day of DHA.  Herring roe, the eggs from the Herring forage fish, is another good source of n-3 polyunsaturated fatty acids that have a high phospholipid content.  MOPL 30 is a supplement product made by Artic Nutrition that includes a lot of phospholipids and a 3:1 ratio of DHA:EPA.  The MOPL 30 proprietary supplement not only increased neuronal generation, it also decreased plasma triacylglycerol and non-esterified fatty acids as well as increased HDL-cholesterol.  Although fasting glucose did not change, the glucose measurement on OGTT decreased at 10 minutes and 120 minutes into the test.   Instead of taking herring roe, uridine, or choline, the MEND program recommends citocoline (aka CDP-Choline) an intermediate compound in the generation of phosphatidylcholine from choline (i.e. already half made).  It is marketed under many names worldwide, including Ceraxon, Cognizin, NeurAxon, Somazina, Synapsine, etc. Studies have shown that citocoline increases dopamine receptor densities, prevents memory impairment, improve focus and mental energy.  Citocoline may also help treat attention deficit disorder (ADD).  The MEND program recommends a dose of 500 mg of Citocoline twice a day, 320 mg of DHA per day, and 180 mg of EPA per day.

18.   Optimize antioxidants – mixed tocopherols, tocotrienols, Selium, blueberries, NAC, Vit C, a-lipoic acid.  Although the free radical theory of aging has largely been proven to be incorrect as the “cause of aging”, there is no question that the “effect of aging” includes free radical damage to proteins, lipids, and nucleic acids that make up a cell.  To try to mitigate these “downstream effects” of aging, many believe that the judicious use of antioxidants still plays a useful role in treating neurodegeneration.  In this blog we have questioned that viewpoint and have pointed out that “antioxidants” like those mentioned often have powerful epigenetic impacts that better explain their actions(ref)(ref).

19.  Optimize Zn:fCu ratio – Alzheimer’s disease may be caused (in part) by copper toxicity — The fact that Alzheimer’s disease was rare prior to 1900, yet now being very common has led many experts to look for environmental “causes” of AD. One of the leading “suspects” in a long list of environmental risks for AD is inorganic copper, which comes from drinking water and supplement pills. There is clear evidence from human subjects that serum free copper is elevated with AD and that the level of free copper in the serum correlates with cognition and predicts cognition loss.  Animal studies have replicated these findings and have shown that as little as 0.12 ppm of coper in distilled drinking water in cholesterol-fed rabbits greatly enhanced the formation of AD.

A 2nd feature of AD is that those affected also have Zinc deficiency.  A small clinical trial published in 2014 showed that in patients over the age of 70, Zinc supplementation protected against cognitive loss and also reduced serum free copper levels in AD patients.  For these reasons, it is unclear if the efficacy of Zinc therapy is on restoring normal Zn levels or if it is due to reducing Cu levels.

The following Table lists the remaining interventions in Dale Bredesen’s list.  These are fairly clear and we will not expand on them here.

20.  Ensure nocturnal oxygenation Exclude or treat sleep apnea [54]
21.  Optimize mitochondrial function CoQ or ubiquinol, α-lipoic acid, PQQ, NAC, ALCAR, Se, Zn, resveratrol, ascorbate, thiamine [55]
22.  Increase focus Pantothenic acid Acetylcholine synthesis requirement
23.  Increase SirT1 function Resveratrol [32]
24.  Exclude heavy metal toxicity Evaluate Hg, Pb, Cd; chelate if indicated CNS effects of heavy metals
25.  MCT effects Coconut oil or Axona [56]

Neuroinflammation “causes” all of the neurodegeneratove diseases

Although we will save most of our discussion on the science of AD to the coming Part 2 blog entry in this series, we comment here a bit more on the the science behind most of the above interventions – their neuroinflammatory nature.

In all neurodegeneratiave diseases (both familial and sporadic cases), there is evidence of a chronic, low grade brain inflammation that does not go away.  Histologically, this is called “gliosis”, a term that describes what is seen under the microscope. As mentioned above, microglial cells are increased in number and they appear “angry” (i.e. they are activated) likely due to the presence of 1-42.  It is likely that these microglial cells are secreting pro-inflammatory factors which are causing the inflammation, although the picture is actually much more complex.  Vince has written about this in 2011 and before in the blog entries Key roles of glia and microglia in age-related neurodegenerative diseases, New views of Alzheimer’s disease and new approaches to treating it, and Alzheimer’s Disease Update. We surface some additional insights here and in Part 2..

This illustration portrays some of the inflammatory processes that go on when microglia and astrocytes are activated:

Image and legend  source The 2014 publication Inflammasomes in neuroinflammation and changes in brain function: a focused review  “Cytokines hypothesis of neuroinflammation: Implications in comorbidity of systemic illnesses with psychiatric disorders. Pro-inflammatory cytokines can migrate between systemic circulation and brain in both directions which could explain the comorbidity of systemic illnesses with psychiatric disorders. There are three pathways for the transport of pro-inflammatory cytokines from systemic circulation to brain as described by Capuron and Miller (2011): Cellular, Humoral, and Neural. Moreover, PAMPs and DAMPs from trauma, infection, and metabolic waste can prime glial cells to express pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. When expressed, these cytokines activates granulocytes, monocytes/macrophages, Natural Killer, and T cells and together contribute to the pathophysiology of neuroinflammation. Chronic neuroinflammation could result in neurodegeneration and associated psychiatric disorders. These pro-inflammatory cytokines also stimulate production and expression of anti-inflammatory cytokine by glial cells that function as negative feedback to reduce the expression of pro-inflammatory cytokines, subsiding the neuroinflammation. MCP-1, Monocyte chemoattractant protein-1; CP, Choroid plexus; CVO, Circumventricular organ.”

The chronic inflammation viewpoint of Alzheimer’s disease is related to but somewhat different than the Beta Amloid viewpoint, the viewpoint covered in my recent blog entry The Amyloid Beta face of Alzheimer’s Disease.

The situation is described in a 2014 publication by Landry and Liu-Ambrose: “An alternative to the classic amyloid centric view of AD suggests that late-onset AD results from age-related alterations in innate immunity and chronic systemic inflammation (for review see Krstic and Knuesel, 2013).

In the Part 2 blog entry we will go into the neuroinflammation hypothesis in further depth and will explore other theories as to causes of AD and the other neurodegenerative diseases.

So, a basic strategy for preventing or delaying the onset of neurodegenerative diseases is to mount a multifront war on systematic inflammation.  The 25 Bredesen interventions described above are initiatives in that war.

About James Watson

I am a physician with a keen interest in the molecular biology of aging. I have specific interests in the theories of antagonistic pleiotropy and hormesis as frameworks to understand cellular senescence and mechanisms for coping with cellular stress. The hormetic “stressors” that I am interested in exploiting at low doses include exercise, hypoxia, intermittent caloric restriction, radiation, etc. I also have a very strong interest in the epigenetic theory of aging and pharmacologic/dietary maintenance of histone acetylation and DNA methylation with age. I also am working on pharmacologic methods to destroy senescent cells and to reactivate quiescent endogenous stem cells. In cases where there is a “stem cell exhaustion” in the specific niche, I am very interested in stem cell therapy (Ex: OA)

This entry was posted in Uncategorized. Bookmark the permalink.

Scientists now know a lot about Alzheimer’s disease, and preventive therapies probably aren’t far off. But even when they become available, such therapies will almost certainly be very expensive. The only products currently being tested in large-scale Alzheimer’s prevention trials are antibodies against the Alzheimer’s-associated amyloid beta (Aβ) protein. Antibodies are large and delicate proteins that must be produced in cells and delivered to patients by needle in a clinic or doctor’s office. Therapies based on solutions of antibodies are increasingly common in medicine, and include the blockbusters Humira for arthritis and Herceptin for cancer, but they typically cost thousands of dollars for a single infusion. Giving such a product on a continuing basis to all the over-60s in America, to help keep them from getting Alzheimer’s, would cost trillions of dollars each year.

Someday, elderly people may be able to take much cheaper Alzheimer’s preventives, in the form of statin-like one-a-day pills, or even a several-jab vaccination against Aβ. But that day still seems far off.

Fortunately, most of us can start lowering our Alzheimer’s risk right now, without expensive patented drugs. A study published last July in Lancet Neurology examined prior Alzheimer’s risk-factor research around the world, and estimated that about one-third of the Alzheimer’s cases in Western countries are attributable to just seven lifestyle-related “modifiable risk factors.” That suggests that, while most cases may be unavoidable, a great many may be preventable via simple changes in diet and other habits—changes that tend  to benefit health generally. In principle, the earlier in life a person starts making these changes to minimize Alzheimer’s risk factors, the better the preventive effect will be.

Stay physically active

AlzRisk-StayFitThe authors of the Lancet Neurology study determined that the greatest modifiable risk factor for Alzheimer’s in the US, UK and Europe is physical inactivity. One of every five Alzheimer’s cases appears to be linked to this bad habit. It’s not hard to see why: the couch-potato lifestyle promotes known risk factors such as obesity, diabetes, inflammation, depression, high blood pressure, and atherosclerosis, and is also associated with another risk factor, low educational status (see below for more on those).

The opposite of physical inactivity, exercise, has been linked to lower Alzheimer’s dementia risk and slower cognitive decline in the elderly, as well as to less brain amyloid buildup (in elderly people and in Alzheimer’s-model mice) and reduced levels of other Alzheimer’s biomarkers. Exercise also appears to have a broad rejuvenating effect on the brain (again, in mice too) by boosting the efficiency of brain waste-removal systems, increasing blood flow (which brings oxygen, nutrients and growth factors), and increasing the production of new hippocampal neurons (neurogenesis).

One recent study found that in people with a moderately higher risk of Alzheimer’s for genetic reasons, exercise—probably through its neurogenesis-boosting effect, at least in part—helps prevent the age-related shrinkage of the hippocampus, a memory-related region that is vulnerable to both aging and Alzheimer’s. Exercise moreover appears to slow the age-related shrinkage of the broader medial temporal lobe, which contains the hippocampus and includes other important memory areas, and the prefrontal lobe, which handles executive functions and is also hit hard in Alzheimer’s.

“I believe that we will never isolate a single mechanism by which exercise works on the brain,” says Kirk Erickson, who researches exercise and aging at the University of Pittsburgh. “This is, in fact the reason why exercise works so well—because it influences so many different physiological pathways.”

Avoid depression, maintain purpose

According to the Lancet Neurology study, depression currently ranks second in apparent risk-increasing effect, after physical inactivity. A study last year in the British Journal of Psychiatry quantified that effect as a 65% increase in apparent risk among the subjects covered by their analysis. Such a jump in risk would be remarkable if confirmed, for the baseline risk of Alzheimer’s among the elderly is already high.

How depression would promote Alzheimer’s isn’t yet clear. One possibility is that chronic psychological stress (see below), which is well known to cause depression, ends up weakening the brain in a way that leaves it more vulnerable to Alzheimer’s. The effect may work through the hippocampus. Depression is associated with a decrease in hippocampal neurogenesis, a shrinkage of the hippocampus, and a decline in hippocampus-related cognitive performance. It thus may render the hippocampus more vulnerable to a degenerative condition such as Alzheimer’s that also targets the hippocampus and closely connected regions. Depression in many cases features reduced signaling in serotonin neurotransmitter systems in the brain, which in turn has been linked to higher production of the Aβ protein. Other biological mechanisms that could plausibly explain how depression leads to dementia include “inflammatory changes, and deficits of nerve growth factors,” UCSF researchers Amy L. Byers and Christine Yaffe noted in a recent review.

Since hippocampal shrinkage occurs in Alzheimer’s even in the absence of depression, some scientists wonder if late-life depression is a symptom rather than a cause of the Alzheimer’s process—or even a reaction to the initial mental decline it brings. A clinical trial showing that alleviating depression reduces Alzheimer’s risk might settle the debate. But it may be hard to set up a conclusive test, because standard antidepressants may help ward off Alzheimer’s in more direct ways than by treating depression. A recent small trial found evidence that an SSRI antidepressant drug can lower Aβ production by boosting serotonin signaling.

In any case, studies linking depression to a higher incidence of Alzheimer’s have been complemented by research linking positive moods to a lower incidence of Alzheimer’s. In one recent study, researchers at Rush University Medical Center found that people with a strong sense of purpose in life—a “tendency to derive meaning from life’s experiences”—at the outset of the study were much less likely to show symptoms of Alzheimer’s or mild cognitive impairment (MCI), and in general were slower to decline cognitively, in the ensuing seven years. Autopsies later revealed that those who had had a sense of higher purpose in their lives did not have a lower burden of Aβ plaques and other Alzheimer’s-type pathology, but still had fared better cognitively.

AlzRisk-StayHappyIt isn’t yet clear how a sense of purpose in life—“eudaimonic well being”—would ward off dementia. However, a study last year by other researchers offered a hint, by linking that form of well being to a reduced expression of stress- and inflammation-related genes. UCLA researcher Steven W. Cole, senior author of that study, suggests that having a sense of higher purpose—feeling that one is part of a cause greater than one’s self—makes one more resistant to the stresses of ordinary life and their adverse health consequences. “People with high levels of eudaimonic well-being may be less stressed by things that threaten them personally because the things they care most about lie in the world outside them, he says.

Consistently with this, other studies have found a greater chance of late-life Alzheimer’s among women with mid-life neurotic personality ratings, and among men and women with serious psychiatric diagnoses related to stress, including anxiety disorders.

Avoid chronic stress

Chronic stress is known to impair human health in various ways, including mental health, so it’s not surprising that epidemiological studies have associated it with a higher risk of Alzheimer’s. Perhaps the best known study in recent years, conducted at Gothenburg University in Sweden, followed 800 women who had reported common psychosocial stress (e.g., from divorce) at a psychiatric examination in 1968. Over nearly four decades of follow-up, women who had reported more psychosocial stressors in 1968 were later diagnosed with Alzheimer’s at a significantly higher rate on average. Similarly, an American study last year linked more self-reported stress in elderly people to greater age-related cognitive decline. Although reducing harmful chronic stress is desirable anyway because it should generally improve health, more studies are needed to determine the precise relationship between chronic stress and Alzheimer’s.

One possible mechanism is the stress-related alteration of the hippocampus, seen also in depression, which includes declines in neurogenesis and might render it less resistant to the Alzheimer’s process. Another is the stress-induced weakening of the prefrontal cortex, a brain region that is perhaps just as important for cognition, and is also affected prominently in Alzheimer’s. Chronic stress also has been linked to inflammation, insulin resistance, and potentially disease-promoting changes in the Alzheimer’s related tau protein.

There are many ways to reduce stress; non-drug methods include physical exercise, more sleep, engagement in hobbies and other interesting activities, and meditative techniques including yoga and “mindfulness.”

Stop smoking

AlzRisk-NoSmokingTobacco smoking is another proposed risk factor, and certainly a plausible one. On its way to shortening life expectancy, smoking promotes hypertension, vascular disease, and diabetes. All three of those maladies (see below) are considered Alzheimer’s risk factors. Smoking also appears to accelerate the aging of at least some tissues, including the brain (in rats), and has been shown to increase Aβ accumulation, neuroinflammation, and other Alzheimer’s-promoting factors in a standard mouse model of the disease. The recent Lancet Neurology study came up with the figure of 59% increased Alzheimer’s dementia risk among elderly smokers, based on epidemiological research.

Oddly enough, smoking was once thought to reduce Alzheimer’s risk. Some early and small studies suggested as much, and their results seemed consistent with smoking’s apparently powerful preventive effect against Parkinson’s disease (through mechanisms that might include the beneficial stimulation of nicotinic receptors on neurons, and the smoke-induced upregulation of neuronal antioxidant systems). However, a large-scale prospective study by eminent British epidemiologists in 2000 found no significant effect of smoking on Alzheimer’s incidence. Other studies have come to similar conclusions, though more recent ones have linked smoking to a significantly elevated Alzheimer’s dementia risk. Whichever is true—no increased risk or some increased risk—you’re probably better off in a general way by not smoking.

Avoid obesity, diabetes, hypertension, and vascular disease

The Lancet Neurology study concluded that 7.3%, 4.5%, and 8.0% of current Alzheimer’s dementia cases in the US are attributable to midlife obesity, type 2 diabetes, and midlife hypertension, respectively, although of course all three of those conditions are interrelated—and all are associated with vascular disease.

The mechanisms through which these conditions contribute to Alzheimer’s haven’t been determined completely. However, hypertension raises the risk of strokes and mini-strokes, which in turn seem to predispose people to Alzheimer’s, possibly by weakening or killing areas of brain tissue, and by promoting cerebrovascular deposits of Aβ. Other linking mechanisms, including disruptions of key brain networks by hypertension, have been proposed. Moreover the ɛ4 genetic variant of the apolipoprotein-E fat-molecule transporter—a variant that is fairly common in the human population—has been linked to higher risks of both atherosclerosis and Alzheimer’s.

Several recent population studies, described at a recent Alzheimer’s conference, have found evidence that Alzheimer’s is becoming less common among the elderly in developed countries. The proposed reasons include the now-widespread use, in those countries, of relatively safe and effective blood pressure-lowering and cholesterol-lowering drugs.

Eat better

AlzRisk-EatBetterIt stands to reason that if diabetes, vascular disease, and hypertension promote or predispose to Alzheimer’s, then the dietary factors that lead to them—saturated fats, red meats, processed sugar, sodium—should be avoided.

There is some evidence too that specific dietary factors including fish may reduce the risks both of Alzheimer’s and general age-related cognitive decline. Several recent studies have linked a Mediterranean diet (olive oil, nuts, fish, red wine) and the similar DASH diet (which emphasizes lower sodium levels) to slower cognitive decline among older people. A large-scale Spanish clinical trial recently found that a Mediterranean diet reduced heart attacks, strokes, and cardiovascular-related deaths in a high-risk population by about one-third—and that should translate into brain benefits too, given the links between cardio- and cerebrovascular problems and Alzheimer’s.

There is also increasing evidence that dietary molecules called advanced glycation end-products (AGEs), and their precursors, can promote inflammation, diabetes and Alzheimer’s. In a recent study, researchers from the Icahn School of Medicine at Mount Sinai found that removing a major AGE precursor called methylglyoxal from the chow of aging mice reduced their usual memory and learning deficits as they aged—whereas higher bloodstream levels of methylglyoxal in elderly humans was associated with a faster cognitive decline. Methyglyoxal and AGEs are found in most foods at varying levels, but in general are less present in foods cooked at lower temperatures, for example by steaming or boiling.

Consider eating less

AlzRisk-EatLessSince the 1930s, scientists have known that low-calorie diets (with adequate nutrition) can greatly lengthen the average lifespan of rodents. In recent decades those findings have been extended to other small animals. There have been investigations of the biological processes that mediate these lifespan-boosting effects, and scientists have found evidence that these processes increase the resistance to age-related neurodegeneration in various animalseven in monkeys.

It seems likely that any beneficial effect of calorie-restriction in monkeys would show up in humans too. And indeed a 2009 study found that three months of calorie restriction did improve memory in elderly people. However, many more such clinical-trial-type experiments will have to be done before scientists conclude that calorie-restriction reduces the age-related susceptibility to Alzheimer’s.

A related dieting technique, and an increasingly popular one in Western countries, is known as the “5:2 diet” for its regimen of intermittent fasting (two days of severe calorie restriction per week, and five days’ normal or increased consumption). Even though 5:2 dieters may end up with a normal calorie intake on the whole, their two-day-per-week fast may evoke the same protective processes in their bodies that are stimulated by calorie restriction. Initial studies have suggested that 5:2-type intermittent fasting reduces weight and insulin resistance in overweight women more effectively than simple calorie restriction, and improves cognition in mice.

Such effects could translate into a better resistance to Alzheimer’s, since, as National Institute on Aging researcher Mark P. Mattson notes: “Insulin resistance at midlife increases the risk of developing Alzheimer’s later in life.”

Mattson and his colleagues now are setting up a study in overweight older women that should shed more light on intermittent fasting’s ability to prevent Alzheimer’s. The clinical trial will, he says, “critically evaluate the effects of intermittent fasting on cognitive functions, neuronal network activity and brain neurochemistry in subjects at risk for cognitive impairment because of their age and metabolic status.”

Animal studies so far suggest, Mattson adds, that intermittent fasting boosts production of the neuron-protecting hormone BDNF (brain-derived neurotrophic factor), along with “chaperone” molecules that help get rid of Aβ and tau aggregates. “In addition,” he says, “the ketones produced during fasting are known to be neuroprotective, and may also activate signaling pathways involved in synaptic plasticity”—the neuronal mechanism underlying learning and memory.  (See Mattson’s TEDx talk: Why Fasting Bolsters Brain Power.)

Some researchers have found evidence that restricting animal-derived protein—particularly during the 50-65 age range—may be another good way to slow cognitive aging, reduce Alzheimer’s risk, and perhaps improve health generally.

Drink moderately if at all

AlzRisk-DrinkLessAt least 140 published studies have looked for some link between alcohol use and Alzheimer’s risk. Some have indicated a significantly higher risk of Alzheimer’s dementia with drinking. A recent Chinese study suggested a doubled risk of Alzheimer’s with daily drinking, and a more than tripled risk for related vascular dementia. A study published in the British Medical Journal in 2004 found that more alcohol intake brought more Alzheimer’s risk for carriers of the apo-E4 gene variant, a major inherited risk factor for Alzheimer’s. A study presented at the Alzheimer’s Association conference in 2012 found that women who started drinking in later life doubled their risk of cognitive impairment.

However, these studies are far from conclusive, since drinking habits may be connected to other health-related behaviors that worsen Alzheimer’s risk, and since alcohol abuse can cause its own form of dementia. Most studies seem to have found little or no evidence for an adverse effect of ordinary drinking on Alzheimer’s risk. To the contrary, some studies, including one reported prominently in the New England Journal of Medicine in 2005, found indications that moderate drinking has a beneficial effect at preserving cognition. The author of a recent review for the US National Institutes of Health concluded that: “Although an increased risk of [Alzheimer’s] with alcohol use is plausible based on biological evidence, the epidemiologic evidence does not support an association. In the few studies that report a significant association, alcohol consumption is more often found to reduce the risk of [Alzheimer’s] than to increase it.” Similarly, the authors of a 2011 meta-analysis of published studies wrote: “Overall, light to moderate drinking does not appear to impair cognition in younger subjects and actually seems to reduce the risk of dementia and cognitive decline in older subjects.”

Reduce your inflammation

One of the more consistent neural signs of Alzheimer’s is the presence of microglia—the brain’s resident immune cells—in an inflammatory, “activated” state in affected brain areas. That neural inflammation may be aimed in part at a beneficial clearing out of Aβ and tau aggregates, as well as dead and dying brain cells. But inflammation anywhere in the body, especially chronic inflammation, can cause collateral damage to healthy tissue. In the case of microglial cells, the activated, inflamed state appears to increase their tendency to cause collateral damage to brain cells, and at the same time to reduce their capacity to clear away accumulating Aβ. Neuroinflammation even appears to stimulate greater production of Aβ. Thus, for more than two decades now, researchers have been looking at the possibility that inflammation is an accelerant of the Alzheimer’s process, and maybe even a trigger.

There has been some striking epidemiological evidence for this idea. In 1992, for example, scientists reported that Japanese lepers treated long-term with the drug dapsone—an antibacterial that is also a powerful, brain-penetrating anti-inflammatory drug—had a markedly lower prevalence of Alzheimer’s. Some studies of arthritis patients treated chronically with nonsteroidal anti-inflammatory drugs (NSAIDs) found that they too seemed less prone to Alzheimer’s. Meanwhile genetic studies linked variants of some immune-related genes to higher Alzheimer’s risk. Scientists have been exploring specific immune pathways in the brain and have shown that blocking some of them quiets microglial inflammation and reduces Aβ buildup and cognitive deficits in transgenic mice that model Alzheimer’s.

A small clinical trial of the NSAID indomethacin, reported in 1993, suggested that it might stop or even reverse the course of Alzheimer’s dementia in people. But since then, larger clinical trials have essentially ruled out the possibility of preventing Alzheimer’s with common NSAIDs. Those trials also have shown that, given NSAIDs’ side effects, their chronic use may end up doing more harm than good in elderly patients.

Non-NSAID compounds that target microglial activation pathways in the brain are still being investigated. Other possible methods for reducing chronic inflammation include weight/fat loss, a Mediterranean diet, physical exercise and (see below) maintaining an adequate store of vitamin D.

Keep up your levels of vitamin D

AlzRisk-VitaminDEpidemiological studies have long suggested a link between low vitamin D levels and a greater susceptibility to Alzheimer’s. Two recent longitudinal studies—tracking people over time—have also provided support for such an association. One found that subjects with low (<25 nmol/L) vitamin D at the start of the study later developed signs of Alzheimer’s at more than twice the rate of those who started with adequate levels (greater than or equal to 50 nmol/L). A more definitive, large-scale clinical trial of vitamin D’s effects in preventing diseases—including Alzheimer’s—is ongoing.

How could vitamin D help the brain ward off Alzheimer’s? Perhaps by preventing the chronic inflammation that may exacerbate the disease, and also by exerting a broadly “trophic,” health-boosting effect on neurons, thus enabling them to better survive stresses. Some studies have found that vitamin D also boosts the clearance of Aβ and may even dial down its production by neurons. In any case, Børge G. Nordestgaard, senior author of the first of the longitudinal studies cited above, notes that “low vitamin D has been associated with many different diseases and also increased mortality, so low vitamin D could be just some sort of marker of poor health generally.

Vitamin D supplements are available over the counter, but probably for most people the best way to boost vitamin D levels is to spend more time outdoors in the sunshine.

Avoid head injury

AlzRisk-AvoidInjurySignificant head injuries are associated with a higher risk of dementia later in life, including Alzheimer’s dementia. A recent study of nearly 200,000 US veterans’s medical records found, for example, that traumatic brain injury (TBI) “in older veterans was associated with a 60% increase in the risk of developing dementia” in the nine years following injury. Another large study in 1999 found no jump in the overall Alzheimer’s incidence among TBI cases but did find that people with TBI tended to get Alzheimer’s about a decade earlier than expected.

Not every study that has looked for a link between TBI and Alzheimer’s has found one, and there are confounding factors that could predispose people to both TBI and dementia. But there is now evidence that even mild concussions can lead to a neurodegenerative syndrome closely related to Alzheimer’s, chronic traumatic encephalopathy, which is said to afflict some contact-sport athletes and survivors of explosion-related brain injuries. There are hints too that some of the same people at risk for CTE also have a greater risk of developing Alzheimer’s.

Potential mechanisms linking brain injury to Alzheimer’s include greater inflammation (which on its own is a risk factor for Alzheimer’s), injury-related overproduction of Aβ and release of tau from injured neurons, and even brain-network disruption effects.

Get smart?

AlzRisk-GetSmartA 1994 study in the Journal of the American Medical Association found a doubled incidence of dementia—which is usually Alzheimer’s dementia—in elderly people with relatively “low educational attainment,” and nearly a tripled incidence in elderly people who also had “low lifetime occupational attainment.” The authors suggested that more years of education, and a more demanding career, could help ward off Alzheimer’s “either by decreasing ease of clinical detection . . . or by imparting a reserve that delays the onset of clinical manifestations.” Other studies have found similar results. The Lancet Neurology analysis concluded that low educational attainment accounts for about 10% of Alzheimer’s cases in the US, Europe, and UK.

Population studies also have shown links between reduced Alzheimer’s incidence and increased mental activity. Researchers in Sweden in 2002 reported an association between participation in various intellectually or socially engaging tasks and a reduction in the incidence of dementia years later. A study that same year from Rush Medical Center came up with similar results, as did a 2003 study in the New England Journal of Medicine, which linked lowered dementia incidence to leisure activities such as “reading, playing board games, playing musical instruments, and dancing.” A 2008 study of male twins—only one of each pair having Alzheimer’s—concluded that “[g]reater midlife cognitive activity was associated with a 26% risk reduction for dementia onset.” A 2013 study found that for elderly people, playing a specially designed video game could improve their “cognitive control”—prefrontal lobe functioning that is among the first to be impaired in Alzheimer’s. Several studies also have reported an association between bilingualism and a reduced Alzheimer’s incidence or delayed onset. A 2010 study in transgenic “Alzheimer’s mice” found that a more natural, less lonely mouse social environment boosted neurogenesis, reduced disease-linked forms of tau and Aβ, and enhanced the animals’ ability to learn.

As for some other risk factors, not every study that has looked for a link between intellect and Alzheimer’s has found it. Certainly there are potential confounding factors: Years before it is formally diagnosed, Alzheimer’s may cause enough impairment to reduce one’s willingness to engage in mentally demanding tasks. Also, people with less education and less social engagement tend to be less healthy generally, in part because they are less likely to have healthy dietary and other habits.

A well controlled clinical trial, showing that intellectual or social engagement over a relatively long period in late middle age causes a significant reduction in Alzheimer’s risk, would settle the issue. But even in the absence, for now, of such trial results, it is almost certain that engaging in more intellectual and social activities won’t hurt you. Indeed, laboratory and human studies have long found that a “socially enrichedenvironment brings multiple health benefits.

Get enough sleep—but not too much

AlzRisk-EnoughSleepInadequate sleep may bring a higher risk of Alzheimer’s and of faster cognitive decline generally. A study in 2011 found, for example, that elderly women who had sleep-disturbing apnea were roughly twice as likely to go on to develop MCI or dementia as those who slept normally.

This is an area that deserves more study, but there are several hypothetical mechanisms of causation, which in principle could be working together. Sleeplessness generally lowers cognitive performance, and particularly hurts memory consolidation, and thus could be weakening the very structures—the hippocampus and its nearest neighbors—that are hit earliest and hardest in Alzheimer’s. There is some evidence that chronic sleeplessness also promotes obesity and diabetes—which on their own seem to be risk factors for Alzheimer’s. Aβ levels in cerebrospinal fluid appear to rise by day and fall by night, hinting that sleep-related processes enhance Aβ clearance—and that impaired sleep could promote Aβ buildup.

One caveat here is that, even if sleep problems promote Alzheimer’s, the reverse may also be true. Sleep disturbances are common in people who have progressed all the way to Alzheimer’s dementia, and have long been considered symptoms of the disease. Similarly, a study in 2012 found that in Alzheimer’s-model transgenic mice, the accumulation of Aβ into plaques eventually disrupts the animals’ normal sleep-wake cycle. That disruption may occur through the dysregulation of the system that produces orexin, a wakefulness-promoting hormone.

Another caveat, which is probably relevant to any discussion of the health benefits of sleep, is that more sleep doesn’t necessarily mean more benefit. Indeed, the inclination to sleep for more than 8 hours per night may be an indicator of underlying health problems. Research so far suggests that people who live longest get an intermediate level of sleep, around 7 hours per night, with lifespan falling off at shorter and longer sleep durations. A recent study found that elderly people who reported getting 9 hours or more of sleep per night had about 60% more chance of dying of dementia in the study period than those reporting 6-8 hours sleep.

Summing up

Though not everyone will be able to avoid Alzheimer’s, research suggests that a large subset of aging people could do so, in effect, by adopting key elements of a healthier lifestyle. These lifestyle changes—which should benefit health generally—include getting plenty of exercise; eating less, shifting to a Mediterranean style diet and getting plenty of vitamin D; avoiding stress and depression and, ideally, finding some higher purpose in life; avoiding hypertension, diabetes, cardiovascular disease and chronic inflammation; drinking moderately if at all and never smoking; staying intellectually and socially active; avoiding head injury; and getting enough sleep. 

 

Source: How to Reduce Your Risk of Alzheimer’s Without Taking Drugs

The Inflammatory Seven- Foods That Increase Inflammation

Soda pop and sugary drinks

Commercial dairy products including commercial milk, ice creams and powdered milks

Meat including smoked or cured luncheon meat, sausage, bologna, bacon and ham

Most commercially refined vegetable oils

French fries or, for that matter, pretty much anything deep fried

Commercial baked goods made with hydrogenated vegetable oil products– Mini cupcakes with bright blue icing says it all!

Margarine and other spreads made with hydrogenated or partially hydrogenated vegetable oils (trans fats)

Source: Inflammatory Foods – The Foods That Can Harm Your Health

Most Downloaded: Telomerase and cancer

Telomerase and cancer

  1. Jerry W. Shay1,+,
  2. Ying Zou1,
  3. Eiso Hiyama2 and
  4. Woodring E. Wright1

+ Author Affiliations


  1. 1The University of Texas Southwestern Medical Center, Department of Cell Biology, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA and 2Department of General Medicine, Hiroshima University School of Medicine, Hiroshima, Japan

Abstract

Telomerase, a eukaryotic ribonucleoprotein (RNP) complex, contains both an essential RNA and a protein reverse transcriptase subunit. By reverse transcription, the telomerase RNP maintains telomere length stability in almost all cancer cells. Over the past few years there has been significant progress in identifying the components of the telomerase holoenzyme complex and the proteins that associate with telomeres, in order to elucidate mechanisms of telomere length regulation. This review covers recent advances in the field including the use of telomerase in cancer diagnostics and an overview of anti-telomerase cancer therapeutic approaches.

Received 9 January 2001; Accepted 22 January 2001.

INTRODUCTION

A fundamental difference in the behavior of normal versus tumor cells in culture (15) is that normal cells divide for a limited number of times (exhibit cellular senescence) whereas tumor cells usually have the ability to proliferate indefinitely (are immortal). There is substantial experimental evidence that cellular aging is dependent on cell division and that the total cellular lifespan is measured by the number of cell generations, not by chronological time (6,7). This means there is an intrinsic molecular counting process occurring during cell growth that culminates in the cessation of cell division. It is now evident that the progressive loss of the telomeric ends of chromosomes is an important timing mechanism in human cellular aging (820). Human telomeres contain long stretches of the repetitive sequence TTAGGG (21,22) which are bound by specific proteins. With each cell division, telomeres shorten by ∼50–200 bp (23), primarily because the lagging strand of DNA synthesis is unable to replicate the extreme 3′ end of the chromosome (known as the end replication problem) (24,25). When telomeres become sufficiently short, cells enter an irreversible growth arrest called cellular senescence. In most instances cells become senescent before they can accumulate enough mutations to become cancerous, thus the growth arrest induced by short telomeres may be a potent anti-cancer mechanism.

Telomerase, a eukaryotic ribonucleoprotein (RNP) complex (2633), helps to stabilize telomere length in human stem cells, reproductive cells (34) and cancer cells (35,36) by adding TTAGGG repeats onto the telomeres using its intrinsic RNA as a template for reverse transcription (37). Telomerase activity has been found in almost all human tumors but not in adjacent normal cells (35,36). The most prominent hypothesis is that maintenance of telomere stability is required for the long-term proliferation of tumors (3842). Thus, escape from cellular senescence and becoming immortal by activating telomerase, or an alternative mechanism to maintain telomeres (43), constitutes an additional step in oncogenesis that most tumors require for their ongoing proliferation. This makes telomerase a target not only for cancer diagnosis but also for the development of novel anti-cancer therapeutic agents.

EVIDENCE THAT TELOMERE SHORTENING LEADS TO REPLICATIVE SENESCENCE

Early in their cultured lifespan, human fibroblasts derived from a young individual have long telomeres and strong signals when examined by in situ hybridization (44) using a labeled probe specific for TTAGGG repeats, whereas old passage have considerably shorter telomeres (Fig. 1). In many patients with premature aging syndromes called segmental progerias (e.g. Hutchinson–Gilford syndrome, Werner’s syndrome and Trisomy 21) there are tissues that have shorter telomeres compared with age-matched controls, and cells obtained from some of these individuals show a reduced proliferative capacity in culture (45). Most human proliferative tissues and organs, including most somatic cells (even stem cells of renewal tissues), exhibit progressive telomere shortening throughout life. There have been many studies demonstrating correlations between telomere shortening and proliferative failure of human cells (617). Evidence that it is causal was demonstrated by introducing the telomerase catalytic protein component [human telomerase reverse transcriptase (hTERT)] into normal human cells (18,19). Normal human cells stably expressing transfected telomerase exhibited telomerase activity, demonstrated telomere maintenance and showed indefinite proliferation, providing direct evidence that telomere shortening controls cellular aging (4654). The cells with introduced telomerase maintain a normal chromosome complement and continue to grow in a normal manner for hundreds of doublings (46,47). These observations provide direct evidence for the hypothesis that telomere shortening determines the proliferative capacity of human cells.

Figure 1. Telomeres are repetitive DNA sequences at the end of linear chromosomes. In most normal cells, progressive telomere shortening is observed each time a cell divides. When telomeres are short, cells stop dividing and undergo a growth arrest (called replicative senescence). Almost all cancer cells are immortal, having overcome cellular senescence by reactivating or upregulating telomerase, a cellular reverse transcriptase that stabilizes telomeres. In this figure, human dermal BJ fibroblasts at low passage, population doubling (PD) 16 and 61, were treated with colcemid to arrest cells in mitosis and chromosome spreads were made. Samples were prepared for quantitative fluorescence in situ hybridization (Q-FISH) microscopy using Cy3-labeled peptide nucleic acid probes specific for (TTAGGG)n telomere sequences (red/pink) and the general DNA dye DAPI (blue/purple). Images of Cy3 and DAPI fluorescence were acquired on a digital image microscopy system to calculate the fluorescence intensity for each telomere. The telomere length is proportional to the number of hybridized probes.

PROTEINS THAT INTERACT WITH TELOMERASE AND TELOMERES

Two central issues are determining how short telomere length signals entry into replicative senescence in normal cells and how telomere length is maintained by the telomerase RNP in tumor cells. To answer these important questions, two overlapping areas are being pursued: (i) identifying and defining the function of the proteins at the telomere and (ii) identifying the components and function of the proteins that associate with the telomerase RNP complex.

Telomere associated proteins

Human telomeres are hidden from the cellular machinery that would normally treat the end of a linear DNA molecule as a broken strand needing repair. Pioneering work by the de Lange laboratory (5560) has identified two of the major telomeric DNA binding proteins, telomeric repeat binding factor (TRF)1 and TRF2. Both TRF1 and TRF2 are expressed in all human cell types, are associated with telomeric repeats throughout the cell cycle and influence the length regulation of human telomeres either directly or by their interactions with other factors (6172). TRF1 interacts with tankyrase (6365) and TRF1 interacting protein 2 (TIN2) (66) (Table 1), and TRF2 interacts with hRap1 (67) and the Mre11/Rad50/Nbs1 DNA repair complex (68). Other factors involved in the detection and repair of DNA damage, such as Ku70/80 heterodimer, also interact with TRF2 and bind to telomeric DNA ends (69,70). In addition, in certain situations, heterogeneous nuclear RNPs (hnRNPs) (7174), ATM kinase (7577) and poly(ADP‐ribose) polymerase (PARP) (78) may influence telomere length homeostasis. The very terminus of the telomere has a 3′ single-stranded overhang (which varies in length depending on the cell type). Electron microscopic analysis of telomeres has revealed that the end forms a higher order structure called the t-loop (79). It is thought, but not proven, that the several kilobase-long t-loop is generated by strand invasion of the single-stranded overhang into the duplex part of the telomere repeat, forming a displacement or d-loop (79). Collectively these components and structures are likely to be involved in the protection and the maintenance of the ends.

Table 1.

Major human telomere proteins and telomerase components

Telomerase associated proteins

The human telomerase RNP consists of both a catalytic protein component (hTERT) and a 451 bp integral RNA [human telomerase RNA (hTR)] that are essential for telomerase activity (18,33). The 3′ half of the hTR resembles the box H/ACA family of small nucleolar RNAs (snoRNAs) (80,81), and although the box H/ACA motif is not required for in vitro assembly of telomerase, it is essential for proper 3′-end processing, stability and nucleolar targeting in vivo (82). The 5′ end of hTR contains the template used for the addition of telomeric sequences to the ends of the chromosomes (37,83), as well as a pseudoknot that is likely to be important for telomerase function (81,84). The 5′ end of hTR also contains a 6 bp U-rich tract required for a direct interaction with hnRNPs C1 and C2 (85). Although several regions of hTR interact with the catalytic protein component of telomerase (8688), it is unclear whether these interactions are mediated by auxiliary proteins, direct contacts or both.

Many auxiliary proteins have been identified that associate with the human telomerase RNP (8998). The vault protein TEP1 was the first to be described (93,94). The snoRNA binding proteins dyskerin and hGAR1 bind the snoRNA motif at the 3′ end of hTR (80,95). The chaperone proteins p23/hsp90 are involved in the assembly of telomerase activity (96). Members of the hnRNP family of RNA binding proteins interact with telomeric DNA as well as telomerase (85,97,98). More recently, the La autoantigen, which is important for the assembly of other RNA particles (99101) and the maturation of tRNAs (102), has been shown to interact directly with the human telomerase RNP; La’s expression levels also influence telomere length in a telomerase RNP-dependent fashion (99).

DETECTION OF TELOMERASE IN CANCER DIAGNOSTICS

Most human cancers have short telomeres and express high levels of telomerase, whereas in most normal somatic tissues telomerase is absent (35,36). Telomerase has been examined in hundreds of studies as a potentially sensitive biomarker for screening, early cancer detection, prognosis or in monitoring as an indication of residual disease (103133). The detection of telomerase activity has been evaluated using commercially available research assays (106108) on fresh or fresh frozen tumor biopsies, fluids and secretions. With few exceptions, these have shown that reactivation or upregulation of telomerase activity and its template RNA (hTR) and catalytic protein component (hTERT) are associated with all cancer types investigated.

The catalytic protein of the telomerase RNP, hTERT, is believed to be a critical if not rate limiting step in the production of telomerase activity (32). We have examined hTERT protein distribution by immunohistochemistry not only in cultured cells (Fig. 2) but also in tissue sections (Fig. 3). Cancer cells (HeLa, HT1080) and normal fibroblasts expressing an introduced hTERT cDNA express high levels of telomerase protein (Fig. 2), but this protein is not detected in normal cells (Fig. 2). Cells with telomerase activity have positive nuclear signals whereas cells without telomerase activity do not (132). In most normal epithelial tissues, hTERT expression is limited to stem cells and their immediate descendants. The immunolocalization of hTERT in specimens of adult cancers reveals that the level of telomerase activity mainly depends on the number of tumor cells in a specimen (132). In cancers with high telomerase activity, hTERT is detected in almost all cells, whereas cancers with low telomerase activity have fewer hTERT positive cells. The signal intensity per nucleus of hTERT positive cells does not differ substantially between tumors with various levels of telomerase activity, suggesting that relative telomerase activity of tissue specimens from cancer patients may be a surrogate indicator of overall tumor burden.

Figure 2. The catalytic reverse transcriptase protein component of telomerase, hTERT, is required for the production of telomerase activity. These images represent immunohistochemical localization of hTERT protein in cells. Cancer cells such as HeLa and HT1080 and normal fibroblasts expressing an introduced hTERT cDNA express high levels of telomerase protein but this protein is not detected in normal cells (BJ). Cells with telomerase activity have positive nuclear signals whereas cells without telomerase activity do not.

Figure 3. Immunohistochemical localization of hTERT protein in archival paraffin embedded breast tissue. The immunolocalization of hTERT was in the tumor cells of ductal cell carcinoma in situ (DCIS) and of invasive breast carcinoma but not in the stromal elements. Telomerase activity was detected in both of these tissues (data not shown) but there was considerably more activity in the advanced cancer compared to the DCIS. Thus the level of telomerase activity in tissue specimens may depend on the number of tumor cells in a specimen.

ANTI-TELOMERASE CANCER THERAPY

The telomerase RNP and telomere complex present multiple potential targets for the design of new anticancer strategies (134169). Telomerase may be a challenging target since its inhibition should exhibit a lag phase: the lack of telomerase should not affect cell growth rates until progressive telomere shortening with each cell division eventually causes cells to die or undergo growth arrest. Although it has been correctly suggested that this approach would not be sufficient by itself in patients with a large tumor burden (138141), it may be a unique approach to patients with minimal residual disease. Importantly, normal somatic cells that lack telomerase expression should be largely unaffected by anti-telomerase therapy. Although telomerase inhibitors should possess great specificity, it is hoped they will also display low toxicity and few side effects. The most likely use of telomerase inhibitors would be as an adjuvant treatment in combination with surgery, radiation treatment and typical chemotherapy, when tumor burden is minimal. It is also possible that telomerase inhibitors could be used following standard therapies in which there is no clinical evidence of residual disease in order to treat possible micrometastases, and thus prevent cancer relapse. These situations will require prolonged treatment, so it will be important that the drugs have a low toxicity profile and are easily administered.

The primary unwanted effect of telomerase inhibition therapy may be on telomerase-positive reproductive cells and other proliferative cells of renewal tissues (3842). Cells from such tissues generally have much longer telomeres than most tumor cell populations. Furthermore, stem cells of renewal tissues should be much less affected than dividing tumor cells; they proliferate only occasionally, and telomere shortening should not occur in the absence of cell division. Because the most primitive stem cell populations only rarely divide, their telomeres should shorten at a much slower rate than telomerase-inhibited, proliferating cancer cells. After the cancer cells have shortened their telomeres and died, anti-telomerase therapy could be discontinued and telomerase activity in reproductive and stem cells would be restored. Thus, anti-telomerase therapy is likely to eliminate the proliferative potential of cancer cells before the telomere lengths in normal reproductive and stem cells shorten sufficiently to disrupt their function.

Another avenue is to kill telomerase-expressing cells (146148,156160). Immunotherapy directed against telomerase positive cells is currently under investigation (146148). This approach has the advantage of abolishing the lag phase that is required with the classic mode of telomerase inhibition. However, this treatment might also prove to be toxic to normal stem cells expressing telomerase.

It is still too early to know with certainty whether telomerase inhibitors will become a treatment option against cancer. There is concern about the emergence of alternative mechanisms of telomere maintenance and whether there will be side effects on normal hematopoietic and germline cells. These and other questions will only be answered when anti-telomerase drugs are moved into animal and human clinical trials.

SUMMARY AND FUTURE CHALLENGES

Telomere biology is important in human cancer. Cancer cells need a mechanism to maintain telomeres if they are going to divide indefinitely, and telomerase solves this problem. Although we are beginning to identify an increasing number of telomere- and telomerase-associated proteins, the key is to understand how the telomerase holoenzyme and telomere complex interact to maintain telomere length. The challenge is to learn how to intervene in these processes and exploit our increasing knowledge of telomere biology for the diagnosis and treatment of malignancies.

ACKNOWLEDGEMENTS

We thank the Geron Corporation and the Ellison Medical Foundation.

Notes

  • + To whom correspondence should be addressed. Tel: +1 214 648 3282; Fax: +1 214 648 8694; Email: jerry.shay@utsouthwestern.edu

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
  45. 45.
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
  51. 51.
  52. 52.
  53. 53.
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
  65. 64a.
  66. 65.
  67. 66.
  68. 67.
  69. 68.
  70. 69.
  71. 70.
  72. 71.
  73. 72.
  74. 73.
  75. 74.
  76. 75.
  77. 76.
  78. 77.
  79. 78.
  80. 79.
  81. 80.
  82. 81.
  83. 82.
  84. 83.
  85. 84.
  86. 85.
  87. 86.
  88. 87.
  89. 88.
  90. 89.
  91. 90.
  92. 91.
  93. 92.
  94. 93.
  95. 94.
  96. 95.
  97. 96.
  98. 97.
  99. 98.
  100. 99.
  101. 100.
  102. 101.
  103. 102.
  104. 103.
  105. 104.
  106. 105.
  107. 106.
  108. 107.
  109. 108.
  110. 109.
  111. 110.
  112. 111.
  113. 112.
  114. 113.
  115. 114.
  116. 115.
  117. 116.
  118. 117.
  119. 118.
  120. 119.
  121. 120.
  122. 121.
  123. 122.
  124. 123.
  125. 124.
  126. 125.
  127. 126.
  128. 127.
  129. 128.
  130. 129.
  131. 130.
  132. 131.
  133. 132.
  134. 133.
  135. 134.
  136. 135.
  137. 136.
  138. 137.
  139. 138.
  140. 139.
  141. 140.
  142. 141.
  143. 142.
  144. 143.
  145. 144.
  146. 145.
  147. 146.
  148. 147.
  149. 148.
  150. 149.
  151. 150.
  152. 151.
  153. 152.
  154. 153.
  155. 154.
  156. 155.
  157. 156.
  158. 157.
  159. 158.
  160. 159.
  161. 160.
  162. 161.
  163. 162.
  164. 163.
  165. 164.
  166. 165.
  167. 166.
  168. 167.
  169. 168.
  170. 169.

Articles citing this article

Source: Telomerase and cancer

D EMENTIA P REVENTION D EBORAH C OLSON MS C D IP ION Guildford GP Education – Update Week Royal Surrey County Hospital, 6 November 2014.

Source: Presentation “D EMENTIA P REVENTION D EBORAH C OLSON MS C D IP ION Guildford GP Education – Update Week Royal Surrey County Hospital, 6 November 2014.”

Source: Next-Generation Biomarkers of Health – Abstract – Next-Generation Nutritional Biomarkers to Guide Better Health Care – Karger Publishers

UNCONVENTIONAL MEDICINE – Blog

Source: UNCONVENTIONAL MEDICINE – Blog

In one study, the researchers show that a reactivated herpes infection doubled the risk of developing Alzheimer’s disease. This study had 3,432 participants who were followed for 11.3 years on average. In another study, 360 people with Alzheimer’s disease were examined and compared to 360 others who had not developed dementia. The samples were taken on average 9.6 years before diagnosis. This study showed an approximately doubled risk of developing Alzheimer’s disease if the person was a carrier of the herpes virus. “Something which makes this hypothesis very interesting is that now herpes infection can in principle be treated with antiviral agents. Therefore within a few years we hope to be able to start studies in which we will also try treating patients to prevent the development of Alzheimer’s disease,” said Lövheim.

Source: Alzheimer’s Risks and Treatment | Page 2

PMC full text:
Published online 2014 Sep 27.

Table 1

Therapeutic System 1.0
Goal Approach Rationale and References
Optimize diet: minimize simple CHO, minimize inflammation. Patients given choice of several low glycemic, low inflammatory, low grain diets. Minimize inflammation, minimize insulin resistance.
Enhance autophagy, ketogenesis Fast 12 hr each night, including 3 hr prior to bedtime. Reduce insulin levels, reduce Aβ.
Reduce stress Personalized—yoga or meditation or music, etc. Reduction of cortisol, CRF, stress axis.
Optimize sleep 8 hr sleep per night; melatonin 0.5mg po qhs; Trp 500mg po 3x/wk if awakening. Exclude sleep apnea. [36]
Exercise 30-60′ per day, 4-6 days/wk [37, 38]
Brain stimulation Posit or related [39]
Homocysteine <7 Me-B12, MTHF, P5P; TMG if necessary [40]
Serum B12 >500 Me-B12 [41]
CRP <1.0; A/G >1.5 Anti-inflammatory diet; curcumin; DHA/EPA; optimize hygiene Critical role of inflammation in AD
Fasting insulin <7; HgbA1c <5.5 Diet as above Type II diabetes-AD relationship
Hormone balance Optimize fT3, fT4, E2, T, progesterone, pregnenolone, cortisol [5, 42]
GI health Repair if needed; prebiotics and probiotics Avoid inflammation, autoimmunity
Reduction of A-beta Curcumin, Ashwagandha 4345
Cognitive enhancement Bacopa monniera, MgT [46, 47]
25OH-D3 = 50-100ng/ml Vitamins D3, K2 [48]
Increase NGF H. erinaceus or ALCAR [49, 50]
Provide synaptic structural components Citicoline, DHA [51].
Optimize antioxidants Mixed tocopherols and tocotrienols, Se, blueberries, NAC, ascorbate, α-lipoic acid [52]
Optimize Zn:fCu ratio Depends on values obtained [53]
Ensure nocturnal oxygenation Exclude or treat sleep apnea [54]
Optimize mitochondrial function CoQ or ubiquinol, α-lipoic acid, PQQ, NAC, ALCAR, Se, Zn, resveratrol, ascorbate, thiamine [55]
Increase focus Pantothenic acid Acetylcholine synthesis requirement
Increase SirT1 function Resveratrol [32]
Exclude heavy metal toxicity Evaluate Hg, Pb, Cd; chelate if indicated CNS effects of heavy metals
MCT effects Coconut oil or Axona [56]

CHO, carbohydrates; Hg, mercury; Pb, lead; Cd, cadmium; MCT, medium chain triglycerides; PQQ, polyquinoline quinone; NAC, N-acetyl cysteine; CoQ, coenzyme Q; ALCAR, acetyl-L-carnitine; DHA, docosahexaenoic acid; MgT, magnesium threonate; fT3, free triiodothyronine; fT4, free thyroxine; E2, estradiol; T, testosterone; Me-B12, methylcobalamin; MTHF, methyltetrahydrofolate; P5P, pyridoxal-5-phosphate; TMG, trimethylglycine; Trp, tryptophan

Source: Reversal of cognitive decline: A novel therapeutic program

Source: 6f9c65894b85994f16ed4f5787821ae1.jpg (JPEG Image, 361 × 480 pixels)

Posts about aging written by Tony

Source: aging | One Regular Guy Writing about Food, Exercise and Living Longer | Page 8

Reversal of cognitive decline: A novel therapeutic program

Abstract

This report describes a novel, comprehensive, and personalized therapeutic program that is based on the underlying pathogenesis of Alzheimer’s disease, and which involves multiple modalities designed to achieve metabolic enhancement for neurodegeneration (MEND). The first 10 patients who have utilized this program include patients with memory loss associated with Alzheimer’s disease (AD), amnestic mild cognitive impairment (aMCI), or subjective cognitive impairment (SCI). Nine of the 10 displayed subjective or objective improvement in cognition beginning within 3-6 months, with the one failure being a patient with very late stage AD. Six of the patients had had to discontinue working or were struggling with their jobs at the time of presentation, and all were able to return to work or continue working with improved performance. Improvements have been sustained, and at this time the longest patient follow-up is two and one-half years from initial treatment, with sustained and marked improvement. These results suggest that a larger, more extensive trial of this therapeutic program is warranted. The results also suggest that, at least early in the course, cognitive decline may be driven in large part by metabolic processes. Furthermore, given the failure of monotherapeutics in AD to date, the results raise the possibility that such a therapeutic system may be useful as a platform on which drugs that would fail as monotherapeutics may succeed as key components of a therapeutic system.

Keywords: Alzheimer’s, dementia, mild cognitive impairment, neurobehavioral disorders, neuroinflammation, neurodegeneration, systems biology

INTRODUCTION

Magnitude of the problem

Cognitive decline is a major concern of the aging population, and Alzheimer’s disease is the major cause of age-related cognitive decline, with approximately 5.4 million American patients and 30 million affected globally [1]. In the absence of effective prevention and treatment, the prospects for the future are of great concern, with 13 million Americans and 160 million globally projected for 2050, leading to potential bankruptcy of the Medicare system. Unlike several other chronic illnesses, Alzheimer’s disease prevalence is on the rise, which makes the need to develop effective prevention and treatment increasingly pressing. Recent estimates suggest that AD has become the third leading cause of death in the United States [2], behind cardiovascular disease and cancer. Furthermore, it has been pointed out recently that women are at the epicenter of the Alzheimer’s epidemic, with 65% of patients and 60% of caregivers being women [3]. Indeed, a woman’s chance of developing AD is now greater than her chance of developing breast cancer [4].

Failure of monotherapeutics

Neurodegenerative disease therapeutics has been, arguably, the field of greatest failure of biomedical therapeutics development. Patients with acute illnesses such as infectious diseases, or with other chronic illnesses, such as cardiovascular disease, osteoporosis, human immunodeficiency virus infection, and even cancer, have access to more effective therapeutic options than do patients with AD or other neurodegenerative diseases such as Lewy body dementia, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. In the case of Alzheimer’s disease, there is not a single therapeutic that exerts anything beyond a marginal, unsustained symptomatic effect, with little or no effect on disease progression. Furthermore, in the past decade alone, hundreds of clinical trials have been conducted for AD, at an aggregate cost of billions of dollars, without success. This has led some to question whether the approach taken to drug development for AD is an optimal one.

Therapeutic success for other chronic illnesses such as cardiovascular disease, cancer, and HIV, has been improved through the use of combination therapies [5]. In the case of AD and its predecessors, mild cognitive impairment (MCI) and subjective cognitive impairment (SCI), comprehensive combination therapies have not been explored. However, the past few decades of genetic and biochemical research have revealed an extensive network of molecular interactions involved in AD pathogenesis, suggesting that a network-based therapeutics approach, rather than a single target-based approach, may be feasible and potentially more effective for the treatment of cognitive decline due to Alzheimer’s disease.

Preclinical studies

Extensive preclinical studies from numerous laboratories have identified multiple pathogenetic targets for potential intervention. These include, in addition to amyloid-β (Aβ) oligomers and tau, inflammatory mediators, apolipoproteins and lipid metabolism factors, hormonal mediators, trophic factors and their receptors, calcium regulatory pathways, axoplasmic transport machinery, neurotransmitters and their receptors, prion protein, and a host of other potential targets. However, one of the drawbacks of these preclinical studies is that many have implicated single pathways, and shown large effects of targeting one pathway, whereas in human studies, such approaches have not been borne out. There are several possible inferences from such discrepant results: first, it is possible that it will be necessary to target multiple pathways simultaneously in order to effect an improvement in symptoms and pathophysiology. Second, it is possible that targeting a single pathway will be sufficient, but that earlier intervention will be required. Third, it is possible that all of these seemingly disparate pathways will converge on a single critical pathway, so that either a single targeted therapy or a multi-component, multi-targeted approach may be effective. And fourth, of course it is possible that neither of these two types of approaches will be sufficient. It is worth noting, however, that it is possible that addressing multiple targets within the network underlying AD pathophysiology may be successful even when each target is affected in a relatively modest way; in other words, the effects of the various targets may be additive, multiplicative, or otherwise synergistic.

Based on a combination of in vitro and in vivo studies, we have advanced a model in which AD results from an imbalance in endogenous plasticity signaling (Fig. (Fig.1),1), 59, and in which the β-amyloid precursor protein (APP) is a mediator of such plasticity-related signaling. Thus the model suggests that AD is analogous to other chronic illnesses such as cancer, osteoporosis, and atherosclerosis. In the case of osteoporosis, osteoblastic signaling is chronically exceeded by osteoclastic signaling, resulting in an age-associated chronic illness featuring loss of bone. By analogy, in Alzheimer’s disease, there is a fundamental, age-associated imbalance between the dynamically opposed physiological processes that mediate plasticity, i.e., between synaptoblastic and synaptoclastic activity. This signaling involves physiological mediators of synaptic development, maintenance, repair, and remodeling, including APP, its derivative peptides, ApoE, and tau, and is modulated by all of the many disparate factors associated with Alzheimer’s disease. Furthermore, just as for neoplasia, positive feedback selects and amplifies the disease process; however, whereas in oncogenesis, the positive feedback occurs at the cellular level, in Alzheimer’s disease, the positive feedback occurs at the molecular species level, in the form of prionic loops [5, 8, 9].

Figure 1

Alternative processing of, and signaling by, APP. [5].

In support of this model, the four peptides derived from the amyloidogenic processing of β-amyloid precursor protein (APP)—sAPPβ, Aβ, Jcasp, and C31—have been shown to mediate neurite retraction, synaptic inhibition, caspase activation, and programmed cell death [6, 1012]; whereas, in contrast, the two peptides derived from the non-amyloidogenic processing of APP—sAPPα and αCTF—mediate neurite extension, and inhibit Aβ production, caspase activation, and programmed cell death 1315. Thus APP appears to function as a molecular switch, mediating plasticity-related processes, and AD is associated, whether causally or incidentally, with an increase in the ratio of the neurite-retractive peptides to the neurite-extending peptides. Reducing this ratio, whether by affecting BACE (β-site APP cleaving enzyme) or other cleavage of APP, appears to mitigate the AD severity [7, 16, 17].

Of particular interest for the development of a therapeutic program whose goal is to correct the hypothesized chronic synaptoblastic:synaptoclastic imbalance is the feedback mechanism: whereas homeostatic (negative) feedback is utilized by biological systems with single goal outcomes (e.g., serum pH) and no requirement for amplification, prionic loop (positive) feedback is utilized by biological systems with multi-goal outcomes and a requirement for rapid amplification (e.g., thrombus formation or, potentially, synapse modulation), and such systems therefore function as molecular switches [9]. In these latter systems, the positive feedback feature of the systems dictates that the molecular mediators involved, or a subset thereof, beget more of themselves, or enhance their own activities. Thus such amplifying systems are prionic, with the degree of infectivity depending on the stability of the molecular species involved. In the case of APP signaling, binding of a trophic ligand such as netrin-1 increases the production of sAPPα [18], which inhibits BACE cleavage [19], with the complementary fragment, αCTF, inhibiting γ-secretase cleavage [14]; thus cleavage at the α-site produces fragments that inhibit cleavage at the β-site and γ-site rather than feeding back to reduce α-site cleavage. Similarly, cleavage at the β-site and γ-site to produce Aβ feeds back positively to increase APP-C31 production [20], thus favoring the pro-AD, anti-trophic processing of APP. Moreover, Aβ itself has been shown to exhibit prionic properties [21], although the mechanism by which it does so has not been clarified.

Thus APP processing displays positive feedback, and therefore APP and its derivative peptides function as a molecular switch. This has critical implications for therapeutic development, since it offers a mechanism by which a threshold effect occurs. We have taken advantage of this phenomenon to develop drug candidates that increase the anti-AD, trophic APP signaling, while reducing the pro-AD, anti-trophic APP signaling [22] and enhancing cognition [23].

We have found that the manipulation of the plasticity balance that is mediated or reflected by the APP-derivative peptide balance (Fig. (Fig.1),1), whether genetically or pharmacologically, leads to predictable effects on learning and memory. Mutation of the caspase site at Asp664 inhibits the synaptic loss, memory deficits, and dentate gyral atrophy that otherwise occurs in the PDAPP transgenic mouse model of AD [7, 17, 2426]. Furthermore, knock-in studies of a wild type mouse D664A support the notion that APP is indeed involved fundamentally in plasticity. (Kane, et al, unpublished data, 2014)

Systems biology and systems therapeutics of AD

The transgenic mouse studies suggest that APP signaling can be manipulated to inhibit AD pathophysiology. However, the mouse models feature mutations in APP or other familial AD-related genes such as presenilin-1, whereas the large majority of patients with AD suffer from sporadic AD, without an APP or PS1 mutation (although the majority do express the ε4 allele of ApoE). Given the many inputs to the APP signaling balance in humans (e.g., estrogen, netrin-1, Aβ, etc.), and the minimal success with each of many potentially therapeutic agents (e.g., estrogen, melatonin, exercise, vitamin D, curcumin, Ashwagandha, etc.), the pathobiology of AD dictates a system or program rather than a single targeted agent. Successes with other chronic illnesses such as cardiovascular disease, neoplasia, and HIV support the efficacy of multiple-component systems. My colleague and I have recently described such a system for AD [5]. The basic tenets for such a comprehensive therapeutic system are the following:

  1. Just as for other chronic illnesses such as atherosclerotic cardiovascular disease, the goal is not simply to normalize metabolic parameters, but rather to optimize them. As an example, a serum homocysteine level of 12 μmol/l is considered to be within normal limits, but is well documented to be suboptimal [27]. Similar arguments can be made for many other metabolic parameters.
  2. Based on the hypothesis that AD results from an imbalance in an extensive plasticity network, the therapy should address as many of the network components as possible, with the idea that a combination may create an effect that is more than the sum of the effects of many monotherapeutics [5].
  3. Just as for other chronic illnesses such as osteoporosis, cancer, and cardiovascular disease, the underlying network features a threshold effect, such that, once enough of the network components have been impacted, the pathogenetic process would be halted or reversed. Therefore, even though it is not expected that most patients will be able to follow every single step of the protocol, as long as enough steps are followed to exceed the threshold, that should be sufficient.
  4. The approach is personalized, based on the contributory laboratory values affecting the plasticity network; and is computationally intensive, since many physiological data points are analyzed, interdependent network-component status is assessed, and many interventions are prioritized to determine the therapeutic program.
  5. The program is iterative, so that there is continued optimization over time.
  6. For each network component, the goal is to address it in as physiological a way, and as far upstream, as possible.

RESULTS

CASE STUDIES

Patient one: history

A 67-year-old woman presented with two years of progressive memory loss. She held a demanding job that involved preparing analytical reports and traveling widely, but found herself no longer able to analyze data or prepare the reports, and therefore was forced to consider quitting her job. She noted that when she would read, by the time she reached the bottom of a page she would have to start at the top once again, since she was unable to remember the material she had just read. She was no longer able to remember numbers, and had to write down even 4-digit numbers to remember them. She also began to have trouble navigating on the road: even on familiar roads, she would become lost trying to figure out where to enter or exit the road. She also noticed that she would mix up the names of her pets, and forget where the light switches were in her home of years.

Her mother had developed similar progressive cognitive decline beginning in her early 60s, had become severely demented, entered a nursing home, and died at approximately 80 years of age. When the patient consulted her physician about her problems, she was told that she had the same problem her mother had had, and that there was nothing he could do about it. He wrote “memory problems” in her chart, and therefore the patient was turned down in her application for long-term care.

After being informed that she had the same problem as her mother had had, she recalled the many years of her mother’s decline in a nursing home. Knowing that there was still no effective treatment and subsequently losing the ability to purchase long-term care, she decided to commit suicide. She called a friend to commiserate, who suggested that she get on a plane and visit, and then referred her for evaluation.

She began System 1.0 (Table (Table1),1), and was able to adhere to some but not all of the protocol components. Nonetheless, after three months she noted that all of her symptoms had abated: she was able to navigate without problems, remember telephone numbers without difficulty, prepare reports and do all of her work without difficulty, read and retain information, and, overall, she became asymptomatic. She noted that her memory was now better than it had been in many years. On one occasion, she developed an acute viral illness, discontinued the program, and noticed a decline, which reversed when she reinstated the program. Two and one-half years later, now age 70, she remains asymptomatic and continues to work full-time.

Table 1

Therapeutic System 1.0

Patient one: therapeutic program

As noted above, and following an extended discussion of the components of the therapeutic program, the patient began on some but not all of the system: (1) she eliminated all simple carbohydrates, leading to a weight loss of 20 pounds; (2) she eliminated gluten and processed food from her diet, and increased vegetables, fruits, and non-farmed fish; (3) in order to reduce stress, she began yoga, and ultimately became a yoga instructor; (4) as a second measure to reduce the stress of her job, she began to meditate for 20 minutes twice per day; (5) she took melatonin 0.5mg po qhs; (6) she increased her sleep from 4-5 hours per night to 7-8 hours per night; (7) she took methylcobalamin 1mg each day; (8) she took vitamin D3 2000IU each day; (9) she took fish oil 2000mg each day; (10) she took CoQ10 200mg each day; (11) she optimized her oral hygiene using an electric flosser and electric toothbrush; (12) following discussion with her primary care provider, she reinstated HRT (hormone replacement therapy) that had been discontinued following the WHI report in 2002; (13) she fasted for a minimum of 12 hours between dinner and breakfast, and for a minimum of three hours between dinner and bedtime; (14) she exercised for a minimum of 30 minutes, 4-6 days per week.

Patient two: history

A 69-year-old entrepreneur and professional man presented with 11 years of slowly progressive memory loss, which had accelerated over the past one or two years. In 2002, at the age of 58, he had been unable to recall the combination of the lock on his locker, and he felt that this was out of the ordinary for him. In 2003, he had FDG-PET (fluoro-deoxyglucose positron emission tomography), which was read as showing a pattern typical for early Alzheimer’s disease, with reduced glucose utilization in the parietotemporal cortices bilaterally and left > right temporal lobes, but preserved utilization in the frontal lobes, occipital cortices, and basal ganglia. In 2003, 2007, and 2013, he had quantitative neuropsychological testing, which showed a reduction in CVLT (California Verbal Learning Test) from 84%ile to 1%ile, a Stroop color test at 16%ile, and auditory delayed memory at 13%ile. In 2013, he was found to be heterozygous for ApoE4 (3/4). He noted that he had progressive difficulty recognizing the faces at work (prosopagnosia), and had to have his assistants prompt him with the daily schedule. He also recalled an event during which he was several chapters into a book before he finally realized that it was a book he had read previously. In addition, he lost an ability he had had for most of his life: the ability to add columns of numbers rapidly in his head.

He had a homocysteine of 18 μmol/l, CRP <0.5mg/l, 25-OH cholecalciferol 28ng/ml, hemoglobin A1c 5.4%, serum zinc 78mcg/dl, serum copper 120mcg/dl, ceru-loplasmin 25mg/dl, pregnenolone 6ng/dl, testosterone 610ng/dl, albumin:globulin ratio of 1.3, cholesterol 165mg/dl (on Lipitor), HDL 92, LDL 64, triglyceride 47, AM cortisol 14mcg/dl, free T3 3.02pg/ml, free T4 1.27ng/l, TSH 0.58mIU/l, and BMI 24.9.

He began on the therapeutic program, and after six months, his wife, co-workers, and he all noted improvement. He lost 10 pounds. He was able to recognize faces at work unlike before, was able to remember his daily schedule, and was able to function at work without difficulty. He was also noted to be quicker with his responses. His life-long ability to add columns of numbers rapidly in his head, which he had lost during his progressive cognitive decline, returned. His wife pointed out that, although he had clearly shown improvement, the more striking effect was that he had been accelerating in his decline over the prior year or two, and this had been completely halted.

Patient two: therapeutic program

The patient began on the following parts of the overall therapeutic system: (1) he fasted for a minimum of three hours between dinner and bedtime, and for a minimum of 12 hours between dinner and breakfast; (2) he eliminated simple carbohydrates and processed foods from his diet; (3) he increased consumption of vegetables and fruits, and limited consumption of fish to non-farmed, and meat to occasional grass-fed beef or organic chicken; (4) he took probiotics; (5) he took coconut oil i tsp bid; (6) he exercised strenuously, swimming 3-4 times per week, cycling twice per week, and running once per week; (7) he took melatonin 0.5mg po qhs, and tried to sleep as close to 8 hours per night as his schedule would allow; (8) he took herbs Bacopa monniera 250mg, Ashwagandha 500mg, and turmeric 400mg each day; (9) he took methylcobalamin 1mg, methyltetrahydrofolate 0.8mg, and pyridoxine-5-phosphate 50mg each day; (10) he took citicoline 500mg po bid; (11) he took vitamin C 1g per day, vitamin D3 5000IU per day, vitamin E 400IU per day, CoQ10 200mg per day, Zn picolinate 50mg per day, and α-lipoic acid 100mg per day; (12) he took DHA (docosahexaenoic acid) 320mg and EPA (eicosapentaenoic acid) 180mg per day.

Patient three: history

A 55-year-old attorney suffered progressively severe memory loss for four years. She accidentally left the stove on when she left her home on multiple occasions, and then returned, horrified to see that she had left it on once again. She would forget meetings, and agree to multiple meetings at the same time. Because of an inability to remember anything after a delay, she would record conversations, and she carried an iPad on which she took copious notes (but then forgot the password to unlock her iPad). She had been trying to learn Spanish as part of her job, but was unable to remember virtually anything new. She was unable to perform her job, and she sat her children down to explain to them that they could no longer take advantage of her poor memory, that instead they must understand that her memory loss was a serious problem. Her children noted that she frequently became lost in mid-sentence, that she was slow with responses, and that she frequently asked if they had followed up on something she thought she had asked them to do, when in fact she had never asked them to do the tasks to which she referred.

Her homocysteine was 9.8μmol/l, CRP 0.16mg/l, 25-OH cholecalciferol 46ng/ml, hemoglobin A1c 5.3%, pregnenolone 84ng/dl, DHEA 169ng/dl, estradiol 275pg/ml, progesterone 0.4ng/ml, insulin 2.7μIU/ml, AM cortisol 16.3mcg/dl, free T3 3.02pg/ml, free T4 1.32ng/l, and TSH 2.04mIU/l.

After five months on the therapeutic program, she noted that she no longer needed her iPad for notes, and no longer needed to record conversations. She was able to work once again, was able to learn Spanish, and began to learn a new legal specialty. Her children noted that she no longer became lost in mid-sentence, no longer thought she had asked them to do something that she had not asked, and answered their questions with normal rapidity and memory.

Patient three: therapeutic program

She began on the following parts of the therapeutic system: (1) she fasted for a minimum of three hours between dinner and bedtime, and for a minimum of 12 hours between dinner and breakfast; (2) she eliminated simple carbohydrates and processed foods from her diet; (3) she increased consumption of vegetables and fruits, limited consumption of fish to non-farmed, and did not eat meat; (4) she exercised 4-5 times per week; (5) she took melatonin 0.5mg po qhs, and tried to sleep as close to 8 hours per night as her schedule would allow; (6) she tried to reduce stress in her life with meditation and relaxation; (7) she took methylcobalamin 1mg 4x/wk and pyridoxine-5-phosphate 20mg each day; (8) she took citicoline 200mg each day; (9) she took vitamin D3 2000IU per day and CoQ10 200mg per day; (10) she took DHA 700mg and EPA 500mg bid; (11) her primary care provider prescribed bioidentical estradiol with estriol (BIEST), and progesterone; (12) her primary care provider worked with her to reduce her bupropion from 150mg per day to 150mg 3x/wk.

All 10 patients are summarized in Table Table22.

Table 2

Summary of patients treated with the therapeutic system described

DISCUSSION

Results from the 10 patients reported here suggest that memory loss in patients with subjective cognitive impairment, mild cognitive impairment, and at least the early phase of Alzheimer’s disease, may be reversed, and improvement sustained, with the therapeutic program described here. This is the first such demonstration. However, at the current time the results are anecdotal, and therefore a more extensive, controlled clinical trial is warranted.

The results reported here are compatible with the notion that metabolic status represents a crucial, and readily manipulable, determinant of plasticity, and in particular of the abnormal balance of plasticity exhibited in SCI, MCI, and early AD. Furthermore, whereas the normalization of a single metabolic parameter, such as vitamin D3, may exert only a modest effect on pathogenesis, the optimization of a comprehensive set of parameters, which together form a functional network, may have a much more significant effect on pathogenesis and thus on function.

The therapeutic system described in this report derives from basic studies of the role of APP signaling and proteolysis in plasticity, and the imbalance in this receptor proteolysis that reproducibly occurs in Alzheimer’s disease. There are numerous physiological parameters that feed into this balance, such as hormones [28, 29], trophic factors [18], glucose metabolism [30], inflammatory mediators [31], ApoE genetic status [32] sleep-related factors [33], exercise-related factors [34], and many others; therefore, the therapeutic system is designed to reverse the self-reinforcing (i.e., prionic) signaling imbalance that we have hypothesized to mediate Alzheimer’s disease pathophysiology [8].

One potentially critical result from the study is the impact of the therapeutic program on the ability of the various patients to work effectively. Six of the 10 patients had had to discontinue working or were struggling with their jobs at the time of presentation, and all were able to return to work or continue working with improved performance. One additional patient had not had difficulty at work at the time of presentation, and has continued to work without difficulty. The other three patients had not worked for years, and did not begin again after treatment. The improvement in function that is required to work effectively after struggling due to cognitive decline is an important outcome of any successful therapeutic system, and is ultimately more critical to the patients than biomarker effects or test performance.

It is recognized that the system described here is an initial system, one that is likely to benefit from optimization. The system is designed to address multiple key pathogenetic mechanisms, but most of the key pathogenetic mechanisms are suboptimally affected by this initial system. This highlights multiple potential therapeutic targets, and optimizing the therapeutics for each of these targets is the goal of ongoing research and development.

It is noteworthy that the major side effect of this therapeutic system is improved health and optimal BMI (body mass index), a result in stark contrast to monopharmaceutical treatments. However, the program is not easy to follow, and none of the patients followed the entire protocol. The significant diet and lifestyle changes, and multiple pills required each day, were the two most common complaints of the patients. However, these complaints were mitigated by the fact that all of the patients had previously been made aware, either through their physicians or the media, that their prognosis was poor and their cognitive decline essentially untreatable.

One potentially important application of the therapeutic program described herein is that such a therapeutic system may be useful as a platform on which drugs that would fail as monotherapeutics may succeed as key components of a therapeutic system. Combination therapeutics have proven successful in multiple chronic illnesses, such as HIV and cancer [5].

The positive results reported here are perhaps not surprising given that therapeutic programs have proven more effective than monotherapeutics in multiple chronic illnesses, such as atherosclerotic cardiovascular disease, HIV, and cancer [5, 35]. Indeed, chronic illnesses may be more amenable to therapeutic systems than to monotherapeutics. However, the current, anecdotal results require a larger trial, not only to confirm or refute the results reported here, but also to address key questions raised, such as the degree of improvement that can be achieved routinely, how late in the course of cognitive decline reversal can be effected, whether such an approach may be effective in patients with familial Alzheimer’s disease, and how long improvement can be sustained.

In summary

  • A novel, comprehensive, and personalized therapeutic system is described that is based on the underlying pathogenesis of Alzheimer’s disease. The basic tenets for the development of this system are also described.
  • Of the first 10 patients who utilized this program, including patients with memory loss associated with Alzheimer’s disease (AD), amnestic mild cognitive impairment (aMCI), or subjective cognitive impairment (SCI), nine showed subjective or objective improvement.
  • One potentially important outcome is that all six of the patients whose cognitive decline had a major impact on job performance were able to return to work or continue working without difficulty.
  • These anecdotal results suggest the need for a controlled clinical trial of the therapeutic program.

Acknowledgments

I am grateful for support from the NIH (AG16570, AG034427 and AG036975), the Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, the Douglas and Ellen Rosenberg Foundation, the Stephen D. Bechtel, Jr. Foundation, the Joseph Drown Foundation, the Alzheimer’s Association, the Accelerate Fund, the Buck Institute and Marin Community Foundation, the Michael and Catherine Podell Fund, Mr. Craig Johnson, and Ms. Michaela Hoag. I thank Dr. David Jones, Dr. Rammohan Rao, and Dr. Varghese John for discussions, and Rowena Abulencia for preparing the manuscript.

Footnotes

Conflict of interest statement

The author of this manuscript declares no conflict of interest.

REFERENCES

1. Prince MA, Emiliano, Guerchet, Maëlenn, Prina, Matthew World Alzheimer Report 2014 United Kingdom: Alzheimer’s Disease International. 2014.
2. James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014;82:1045–1050. [PMC free article] [PubMed]
3. Shriver M. A Woman’s Nation Takes on Alzheimer’s. New York, USA: Alzheimer’s Association; 2010.
4. 2014 Alzheimer’s Disease Facts and Figures. Special Report on Women and Alzheimer’s Disease. USA: Alzheimer’s Association; 2014. pp. 1–80.
5. Bredesen DE, John V. Next generation therapeutics for Alzheimer’s disease. EMBO Mol Med. 2013;5:795–798. [PMC free article] [PubMed]
6. Lu DC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM, Ye X, Salvesen GS, Koo EH, Bredesen DE. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med. 2000;6:397–404. [PubMed]
7. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA, Chevallier N, Jin K, Greenberg DA, Bredesen DE. Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci U S A. 2006;103:7130–7135. [PMC free article] [PubMed]
8. Bredesen DE. Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence. Mol Neurodegener. 2009;4:27. [PMC free article] [PubMed]
9. Bredesen DE. Prionic Loops, Anti-Prions, and Dependence Receptors in Neurodegeneration. In: Legname GR, Detlev, editors. Prion Research of Stan Prusiner and his Colleagues. Gernamy: Dusseldorf University Press; 2013. pp. 1–24.
10. Lu DC, Shaked GM, Masliah E, Bredesen DE, Koo EH. Amyloid beta protein toxicity mediated by the formation of amyloid-beta protein precursor complexes. Ann Neurol. 2003;54:781–789. [PubMed]
11. Bertrand E, Brouillet E, Caille I, Bouillot C, Cole GM, Prochiantz A, Allinquant B. A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo. Mol Cell Neurosci. 2001;18:503–511. [PubMed]
12. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457:981–989. [PMC free article] [PubMed]
13. Guo H, Tittle TV, Allen H, Maziarz RT. Brefeldin A-mediated apoptosis requires the activation of caspases and is inhibited by Bcl-2. Exp Cell Res. 1998;245:57–68. [PubMed]
14. Tian Y, Crump CJ, Li YM. Dual role of alpha-secretase cleavage in the regulation of gamma-secretase activity for amyloid production. J Biol Chem. 2010;285:32549–32556. [PMC free article] [PubMed]
15. Deyts C, Vetrivel KS, Das S, Shepherd YM, Dupre DJ, Thinakaran G, Parent AT. Novel GalphaS-Protein Signaling Associated with Membrane-Tethered Amyloid Precursor Protein Intracellular Domain. J Neurosci. 2012;32:1714–1729. [PMC free article] [PubMed]
16. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488:96–99. [PubMed]
17. Bredesen DE, John V, Galvan V. Importance of the caspase cleavage site in amyloid-beta protein precursor. J Alzheimers Dis. 2010;22:57–63. [PMC free article] [PubMed]
18. Lourenco FC, Galvan V, Fombonne J, Corset V, Llambi F, Muller U, Bredesen DE, Mehlen P. Netrin-1 interacts with amyloid precursor protein and regulates amyloid-beta production. Cell Death Differ. 2009;16:655–663. [PMC free article] [PubMed]
19. Obregon D, Hou H, Deng J, Giunta B, Tian J, Darlington D, Shahaduzzaman M, Zhu Y, Mori T, Mattson MP, Tan J. Soluble amyloid precursor protein-alpha modulates beta-secretase activity and amyloid-beta generation. Nature communications. 2012;3:777. [PMC free article] [PubMed]
20. Lu D, Soriano S, Bredesen D, Koo E. Caspase cleavage of the amyloid precursor protein modulates amyloid beta-protein toxicity. J Neurochem. 2003;87:733–741. [PubMed]
21. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006;313:1781–1784. [PubMed]
22. Spilman P, Descamps O, Gorostiza O, Peters-Libeu C, Poksay KS, Matalis A, Campagna J, Patent A, Rao R, John V, Bredesen DE. The multi-functional drug tropisetron binds APP and normalizes cognition in a murine Alzheimer’s model. Brain Res. 2014;1551:25–44. [PMC free article] [PubMed]
23. Zhang XY, Liu L, Liu S, Hong X, Chen da C, Xiu MH, Yang FD, Zhang Z, Zhang X, Kosten TA, Kosten TR. Short-term tropisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia. Am J Psychiatry. 2012;169:974–981. [PubMed]
24. Saganich MJ, Schroeder BE, Galvan V, Bredesen DE, Koo EH, Heinemann SF. Deficits in synaptic transmission and learning in amyloid precursor protein (APP) transgenic mice require C-terminal cleavage of APP. J Neurosci. 2006;26:13428–13436. [PubMed]
25. Banwait S, Galvan V, Zhang J, Gorostiza OF, Ataie M, Huang W, Crippen D, Koo EH, Bredesen DE. C-terminal cleavage of the amyloid-beta protein precursor at Asp664: a switch associated with Alzheimer’s disease. J Alzheimers Dis. 2008;13:1–16. [PMC free article] [PubMed]
26. Galvan V, Zhang J, Gorostiza OF, Banwait S, Huang W, Ataie M, Tang H, Bredesen DE. Long-term prevention of Alzheimer’s disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664. Behav Brain Res. 2008;191:246–255. [PMC free article] [PubMed]
27. Heijer T, Skoog I, Oudkerk M, de Leeuw FE, de Groot JC, Hofman A, Breteler MM. Association between blood pressure levels over time and brain atrophy in the elderly. Neurobiol Aging. 2003;24:307–313. [PubMed]
28. Lan YL, Zhao J, Li S. Update on the Neuroprotective Effect of Estrogen Receptor Alpha Against Alzheimer’s Disease. J Alzheimers Dis. 2014 [PubMed]
29. Shi C, Zhu X, Wang J, Long D. Estrogen receptor alpha promotes non-amyloidogenic processing of platelet amyloid precursor protein via the MAPK/ERK pathway. J Steroid Biochem Mol Biol. 2014;144PB:280–285. [PubMed]
30. Yang Y, Wu Y, Zhang S, Song W. High glucose promotes Abeta production by inhibiting APP degradation. PLoS One. 2013;8:e69824. [PMC free article] [PubMed]
31. Sutinen EM, Pirttila T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-beta production in human neuron-like cells. Journal of neuroinflammation. 2012;9:199. [PMC free article] [PubMed]
32. Theendakara V, Patent A, Peters Libeu CA, Philpot B, Flores S, Descamps O, Poksay KS, Zhang Q, Cailing G, Hart M, John V, Rao RV, Bredesen DE. Neuroprotective Sirtuin ratio reversed by ApoE4. Proc Natl Acad Sci U S A. 2013;110:18303–18308. [PMC free article] [PubMed]
33. Wade AG, Farmer M, Harari G, Fund N, Laudon M, Nir T, Frydman-Marom A, Zisapel N. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging. 2014;9:947–961. [PMC free article] [PubMed]
34. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–472. [PubMed]
35. Silberman A, Banthia R, Estay IS, Kemp C, Studley J, Hareras D, Ornish D. The effectiveness and efficacy of an intensive cardiac rehabilitation program in 24 sites. Am J Health Promot. 2010;24:260–266. [PubMed]
36. Polimeni G, Esposito E, Bevelacqua V, Guarneri C, Cuzzocrea S. Role of melatonin supplementation in neurodegenerative disorders. Front Biosci (Landmark Ed) 2014;19:429–446. [PubMed]
37. Aguiar P, Monteiro L, Feres A, Gomes I, Melo A. Rivastigmine transdermal patch and physical exercises for Alzheimer’s disease: a randomized clinical trial. Curr Alzheimer Res. 2014;11:532–537. [PubMed]
38. Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Hazlett KE, Figueroa CM, Kandah CC, Kay CD, Matthews MA, Rao SM. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. Frontiers in aging neuroscience. 2014;6:61. [PMC free article] [PubMed]
39. Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, Zelinski EM. A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J Am Geriatr Soc. 2009;57:594–603. [PMC free article] [PubMed]
40. Hooshmand B, Solomon A, Kareholt I, Leiviska J, Rusanen M, Ahtiluoto S, Winblad B, Laatikainen T, Soininen H, Kivipelto M. Homocysteine and holotranscobalamin and the risk of Alzheimer disease: a longitudinal study. Neurology. 2010;75:1408–1414. [PubMed]
41. Tangney CC, Tang Y, Evans DA, Morris MC. Biochemical indicators of vitamin B12 and folate insufficiency and cognitive decline. Neurology. 2009;72:361–367. [PMC free article] [PubMed]
42. Yaffe K, Haan M, Byers A, Tangen C, Kuller L. Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology. 2000;54:1949–1954. [PubMed]
43. Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008;326:196–208. [PMC free article] [PubMed]
44. Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Teng E, Hu S, Chen PP, Maiti P, Teter B, Cole GM, Frautschy SA. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem. 2013;288:4056–4065. [PMC free article] [PubMed]
45. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A. 2012;109:3510–3515. [PMC free article] [PubMed]
46. Zanotta D, Puricelli S, Bonoldi G. Cognitive effects of a dietary supplement made from extract of Bacopa monnieri, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study. Neuropsychiatr Dis Treat. 2014;10:225–230. [PMC free article] [PubMed]
47. Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Xiong W, Ren C, Liu XG, Chui D, Liu G. Elevation of brain magnesium prevents and reverses cognitive deficits and synaptic loss in Alzheimer’s disease mouse model. J Neurosci. 2013;33:8423–8441. [PubMed]
48. Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PH, Fried L, Kestenbaum BR, Kuller LH, Langa KM, Lopez OL, Kos K, Soni M, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014 [PMC free article] [PubMed]
49. Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, Nakahata N. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biol Pharm Bull. 2008;31:1727–1732. [PubMed]
50. Taglialatela G, Navarra D, Cruciani R, Ramacci MT, Alema GS, Angelucci L. Acetyl-L-carnitine treatment increases nerve growth factor levels and choline acetyltransferase activity in the central nervous system of aged rats. Exp Gerontol. 1994;29:55–66. [PubMed]
51. Cansev M, Wurtman RJ, Sakamoto T, Ulus IH. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement. 2008;4:S153–168. [PMC free article] [PubMed]
52. Parachikova A, Green KN, Hendrix C, LaFerla FM. Formulation of a medical food cocktail for Alzheimer’s disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One. 2010;5:e14015. [PMC free article] [PubMed]
53. Brewer GJ, Kaur S. Zinc deficiency and zinc therapy efficacy with reduction of serum free copper in Alzheimer’s disease. International journal of Alzheimer’s disease. 2013;2013:586365. [PMC free article] [PubMed]
54. Troussiere AC, Monaca Charley C, Salleron J, Richard F, Delbeuck X, Derambure P, Pasquier F, Bombois S. Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2014 [PubMed]
55. Bland J. The Disease Delusion: Conquering the Causes of Illness for a Healthier, Longer and Happier Life. United States: Harper Wave; 2014.
56. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009;6:31. [PMC free article] [PubMed]

Source: Reversal of cognitive decline: A novel therapeutic program

Reversal of cognitive decline in Alzheimer’s disease

Dale E. Bredesen1,2, Edwin C. Amos3, Jonathan Canick4, Mary Ackerley5, Cyrus Raji6, Milan Fiala7, and Jamila Ahdidan8
1Easton Laboratories for Neurodegenerative Disease Research, Department of Neurology, University of California, Los Angeles, CA 90095, USA
2Buck Institute for Research on Aging, Novato, CA 94945, USA
3Department of Neurology, University of California, Los Angeles, CA 90095, USA
4Memory Clinic, California Pacific Medical Center, San Francisco, CA 94115, USA
5Private Practice of Psychiatry, Tucson, AZ 85718, USA
6Department of Radiology, University of California, Los Angeles, CA 90095, USA
7Department of Surgery, University of California, Los Angeles, CA 90095, USA
8Brainreader, Horsens, Denmark
Key words:
neurodegeneration, cognition, biomarkers, dementia, neuropsychology, imaging, Alzheimer’s disease, Apolipoprotein E
Received:
04/12/16; Accepted: 05/30/16; Published: 06/12/16
Correspondence:

Abstract

Alzheimer’s disease is one of the most significant healthcare problems nationally and globally. Recently, the first description of the reversal of cognitive decline in patients with early Alzheimer’s disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment), was published [1]. The therapeutic approach used was programmatic and personalized rather than monotherapeutic and invariant, and was dubbed metabolic enhancement for neurodegeneration (MEND). Patients who had had to discontinue work were able to return to work, and those struggling at work were able to improve their performance. The patients, their spouses, and their co-workers all reported clear improvements. Here we report the results from quantitative MRI and neuropsychological testing in ten patients with cognitive decline, nine ApoE4+ (five homozygous and four heterozygous) and one ApoE4-, who were treated with the MEND protocol for 5-24 months. The magnitude of the improvement is unprecedented, providing additional objective evidence that this programmatic approach to cognitive decline is highly effective. These results have far-reaching implications for the treatment of Alzheimer’s disease, MCI, and SCI; for personalized programs that may enhance pharmaceutical efficacy; and for personal identification of ApoE genotype.

INTRODUCTION

Alzheimer’s disease is now the third leading cause of death in the United States, following only cardio-vascular disease and cancer [1]. There are approximately 5.2 million Americans with AD, but this estimate ignores the many young Americans destined to develop AD during their lifetimes: given the lifetime risk of approximately 15% when including all ApoE genotypes, as many as 45 million of the 318 million Americans now living may develop AD during their lifetimes if no prevention is instituted [2].

Effective treatment of Alzheimer’s disease has been lacking, but recently a novel programmatic approach involving metabolic enhancement was described, with promising anecdotal results [3]. This treatment is based on connectomic studies [4] and previous transgenic findings [5] as well as epidemiological studies of various monotherapeutic components of the overall program [6]. The approach is personalized, responsive to suboptimal metabolic parameters that reflect a network imbalance in synaptic establishment and maintenance vs. reorganization, and progressive in that continued optimization is sought through iterative treatment and metabolic characterization.

Here we report the initial follow-up of ten patients who were treated with this metabolic programmatics approach. One patient had well documented mild cognitive impairment (MCI), with a strongly positive amyloid-PET (positron emission tomography) scan, positive FDG-PET scan (fluorodeoxyglucose PET scan), abnormal neuropsychological testing, and hippocampal volume reduced to 17th percentile; after 10 months on the MEND protocol, his hippocampal volume had increased to 75th percentile, in association with a reversal of cognitive decline. Another patient had well documented early Alzheimer’s disease, with a positive FDG-PET scan and markedly abnormal neuro-psychological testing. After 22 months on the MEND protocol, he showed marked improvement in his neuropsychological testing, with some improvements reaching three standard deviations from his earlier testing.

The initial results for these patients show greater improvements than have been reported for other patients treated for Alzheimer’s disease. The results provide further support for the suggestion that such a comprehensive approach [3] to treat early Alzheimer’s disease and its precursors, MCI and SCI, is effective. The results also support the need for a large-scale, personalized clinical trial using this protocol.

RESULTS

Case studies

Patient 1. A 66-year-old professional man presented with what he described as “senior moments” (for example, forgetting where his keys were or forgetting appointments) of two-years duration, and difficulty performing his work. There was a positive family history of dementia in both parents. He was an ApoE4 heterozygote (3/4), his amyloid PET scan was markedly positive, and his fluorodeoxyglucose (FDG) PET scan showed temporoparietal reduced glucose utilization indicative of Alzheimer’s disease. An MRI showed hippocampal volume at only 17th percentile for his age. His neuropsychological testing was compatible with a diagnosis of MCI. His hs-CRP was 9.9mg/l, albumin: globulin ratio was 1.6, homocysteine 15.1μmol/l, fasting glucose 96mg/dl, hemoglobin A1c 5.5%, fasting insulin 32mIU/l, 25-hydroxychole-calciferol 21ng/ml, TSH 2.21mIU/l, and testosterone 264ng/dl.

He began the MEND protocol [3], lost 18 pounds, and after three months his wife reported that his memory had improved. He noted that his work came more easily to him. However, after five months, he discontinued the majority of the program for approximately three weeks. His wife came home to find his car in the driveway, idling with the keys in the ignition, while he was inside the house, working and unaware that he had left the car idling in the driveway. He re-initiated the program, and had no further such episodes.

After 10 months on the program, he returned for a follow-up MRI, which was subjected to volumetric analyses by both Neuroquant [7] and Neuroreader [8] programs. The former indicated an increase in hippocampal volume from 17th percentile to 75th percentile, with an associated absolute increase in hippocampal volume of 11.7%. The Neuroreader program showed an absolute increase from 7.65cc to 8.3cc, which represents an 8.5% absolute increase in size. The associated Z-scores were -4.6 and +1.6, respectively, disclosing an increase from <5th percentile to the 90th percentile. Thus although the Neuroquant and Neuroreader analyses differed somewhat in the amplitude of the effect detected, they were in agreement that a relatively large magnitude increase in hippocampal volume had occurred.

Follow-up metabolic analysis also disclosed improvement, with hs-CRP having decreased from 9.9mg/l to 3mg/l, fasting insulin having decreased from 32mIU/l to 8mIU/l, homocysteine having decreased from 15.1μmol/l to 8μmol/l, and 25-hydroxychole-calciferol having increased from 21ng/ml to 40ng/ml. See Table 1 for a summary of the responses of all patients to the treatment program.

Table 1. Patient responses to the MEND treatment protocol [3].

Patient Diagnosis ApoE Genotype Treatment Outcome1
66yoM MCI, type 1 (inflammatory) 3/4 Marked subjective improvement, hippocampal volume increase 17th->75th %ile
69yoM AD, type 2 (atrophic) 3/4 Marked subjective improvement, quantitative neuropsychological testing improvement
49yoF MCI, type 2 (and possibly type 3 (toxic)) 4/4 Marked subjective improvement, neuropsychological testing improvement
49yoF MCI, type 2 2/4 Marked subjective improvement, neuropsychological testing improvement
55yoF MCI, type 2 4/4 Marked subjective improvement, neuropsychological testing improvement
74yoM AD, type 1 4/4 Subjective improvement, MMSE 23->30
62yoM AD, type 1.5 (glycotoxic) 4/4 Subjective improvement, MMSE 22->29
68yoM MCI, type 1.5 3/4 Subjective improvement, neuropsychological testing improvement
54yoF AD, type 3 3/3 Clear subjective improvement, MoCA 19->21
54yoF MCI, type 2 4/4 Subjective improvement, neuropsychological testing improvement

1See text for details of treatment outcome.

Comment: This patient had well documented Alzheimer’s disease, with a strongly positive amyloid PET scan, characteristic FDG PET scan, abnormal neuropsychological studies, positive family history, ApoE4-positive (3/4) genotype, and hippocampal volume of 17th percentile. During his 10 months on the MEND protocol, he interrupted his otherwise good compliance once, and this was associated with an episode of memory loss, in which he failed to remember that he had left his car in the driveway while he was working in his house. He returned to the protocol at that time, and after 10 months in total, he demonstrated not only a marked symptomatic improvement (which had begun after approximately three months on the protocol), but also a dramatic increase in hippocampal volume. More modest hippocampal volumetric increases have been described with exercise [9] and with a brain-training program [10], but to our knowledge the magnitude of hippocampal volume increase that occurred with this patient has not been reported previously.

Patient 2. This is a follow-up on patient 2 from a previous publication [3]. A 69-year-old entrepreneur and professional man presented with 11 years of slowly progressive memory loss, which had accelerated over the past one to two years. In 2002, at the age of 58, he had been unable to recall the combination of the lock on his locker, and he felt that this was out of the ordinary for him. In 2003, he had an FDG PET scan, which was read as showing a pattern typical for early Alzheimer’s disease, with reduced glucose utilization in the parietotemporal cortices bilaterally and left > right temporal lobes, but preserved utilization in the frontal lobes, occipital cortices, and basal ganglia. In 2003, 2007, and 2013, he had quantitative neuropsychological testing, which showed a reduction in CVLT (California Verbal Learning Test), a Stroop color test at 16th percentile, and auditory delayed memory at 13th percentile. In 2013, he was found to be heterozygous for ApoE4 (3/4). He noted that he had progressive difficulty recognizing the faces at work (prosopagnosia), and had to have his assistants prompt him with the daily schedule. He also recalled an event during which he was several chapters into a book before he finally realized that it was a book he had read previously. In addition, he lost an ability he had had for most of his life: the ability to add columns of numbers rapidly in his head.

He was advised that, given his status as an Alzheimer’s disease patient and his clear progression, as well as his poor performance on the 2013 test, he should begin to “get his affairs in order.” His business was in the process of being shut down due to his inability to continue work.

His laboratory values included a homocysteine of 18 μmol/l, CRP <0.5mg/l, 25-hydroxycholecalciferol 28ng/ml, hemoglobin A1c 5.4%, serum zinc 78mcg/dl, serum copper 120mcg/dl, copper:zinc ratio of 1.54, ceruloplasmin 25mg/dl, pregnenolone 6ng/dl, testosterone 610ng/dl, albumin:globulin ratio of 1.3, cholesterol 165mg/dl (on atorvastatin), HDL 92mg/dl, LDL 64mg/dl, triglycerides 47mg/dl, AM cortisol 14mcg/dl, free T3 3.02pg/ml, free T4 1.27ng/l, TSH 0.58mIU/l, and BMI 24.9.

He began on the MEND therapeutic program, and after six months, his wife, co-workers, and he all noted improvement. He lost 10 pounds. He was able to recognize faces at work unlike before, was able to remember his daily schedule, and was able to function at work without difficulty. He was also noted to be quicker with his responses. His life-long ability to add columns of numbers rapidly in his head, which he had lost during his progressive cognitive decline, returned. His wife pointed out that, although he had clearly shown improvement, the more striking effect was that he had been accelerating in his decline over the prior year or two, and this had been completely halted.

After 22 months on the program, he returned for follow-up quantitative neuropsychological testing, which revealed marked improvement: his CVLT-IIB had increased from 3rd percentile to 84th percentile (3 standard deviations), total recognized hits from <1st percentile to 50th percentile, CVLT-II from 54th percentile to 96th percentile, auditory delayed memory from 13th percentile to 79th percentile, reverse digit span from 24th percentile to 74th percentile, and processing speed from 93rd percentile to 98th percentile. His business, which had been in the process of termination, was reinvigorated, and a new site was added to the previous sites of operation.

Comment: This patient had well-documented Alzheimer’s disease, with an ApoE4-positive genotype, characteristic FDG-PET scan, characteristic abnormalities on neuropsychological testing, well documented decline on longitudinal quantitative neuropsychological testing, and progression of symptoms. After two years on the protocol, his symptoms and neuropsychological testing improved markedly. The neuropsychologist who performed and evaluated his testing pointed out that his improvement was beyond that which had been observed in the neuropsychologist’s 30 years of practice.

Patient 3. A woman late in her fifth decade began to note episodes of forgetfulness, such as returning home from shopping without the items she had purchased. She also placed household items in the wrong locations repeatedly, and frequently failed to recognize previously familiar faces. She had difficulty remembering which side of the road on which to drive. A male cousin had developed Alzheimer’s disease in his fifth decade. She was found to be an ApoE4 homozygote. On-line cognitive evaluation showed her to be at the 35th percentile for her age, despite her having been an excellent student earlier in her life.

She began various parts of the MEND protocol, and slowly added protocol features over several months. She began to note improvement, and her on-line cognitive evaluation improved to the 98th percentile, where it has remained to the current time, with her having been on the protocol for 3.5 years.

Comment: This patient showed early but definite cognitive decline, documented by on-line quantitative cognitive testing. Her marked improvement has now been sustained for 3.5 years. As described for patient 3 in a previous report [3], her improvement was iterative, with continued optimization over several months.

Patient 4. A 49-year-old woman noted progressive difficulty with word finding, and noted that her vocabulary had become more limited. She also began to feel unsure about her navigation during driving. She also complained of difficulty with facial recognition (prosopagnosia). Her recall was affected, and she described the requirement of “more energy” for recall of events. She had difficulty with remembering scheduled events. She also noted that her clarity and sharpness were reduced, leading to difficulties assisting her children with schoolwork. She had difficulty with complex conversations, and with reading comprehension. She also lost the ability she had had to speak two foreign languages.

Her family history was positive for Alzheimer’s disease in her father, and her ApoE genotype was 2/4. Her MRI was read as normal, but volumetrics were not included. She underwent quantitative neuropsychological testing at a major university center, and was told that she was in the early stages of cognitive decline and therefore ineligible for the Alzheimer’s prevention program, since she was already too late in the disease course for prevention. Her homocysteine was 10μM, hs-CRP 0.6mg/l, hemoglobin A1c 5.2%, fasting insulin 7mIU/l, TSH 1.6mIU/l, and 25-hydroxycholecalciferol 35ng/ml.

She began on the MEND protocol, and over the next several months she noted a clear improvement in recall, reading, navigating, vocabulary, mental clarity, and facial recognition. Her foreign language abilities returned. Nine months after her initial neuropsychological testing, the testing was repeated at the same university site, and she was told that she no longer showed evidence of cognitive decline. Immediate and delayed recall, as well as semantic knowledge, executive function, and processing speed, had all shown improvement.

Comment: This patient had typical early amnestic MCI, which reverted over several months, resulting in a normal neuropsychological examination after nine months. She remains asymptomatic after one year on the program.

Patient 5. A 55-year-old woman presented with memory concerns of two-years duration. She had a positive family history of dementia in an aunt and a grandmother. She was an ApoE4 homozygote and a TOMM40 homozygote (G/G).

She experienced difficulties with word recall several times a day, either being unable to recall the word at all or substituting the wrong word in its place. For example, she would say a word like “tweezers” when she meant to say “tongs” (semantic paraphasic errors). She also experienced an increase in spelling errors as she typed on her computer. As a professional writer and editor with a master’s degree in English, she found these issues very troubling. She often lost her train of thought while speaking, requiring her to ask others what she had just said. In addition, she would misplace items and forget why she had walked into a room. She would also forget some things her husband had told her or asked her to do.

She began the MEND protocol, and after four months her husband reported that her memory had improved. She noted that her word recall was as good as it had ever been, and she was no longer experiencing an increase in spelling errors. She also reported that she rarely lost her train of thought, but if she went off on a tangent or if someone interrupted her, that issue might return. However, if she paused and gave herself a few seconds, she could find her way back to her original train of thought without asking for help. In addition, she no longer forgot why she had entered a room, and only rarely misplaced items.

Her primary care provider noted that, in her professional opinion, her cognition had returned to normal after four months on the protocol, and an on-line cognitive test (CNS Vital Signs), performed prior to the start of the protocol and then again after five months on the protocol, confirmed this opinion: her overall cognitive assessment (neurocognitive index) had increased from 16th percentile to 73rd percentile; composite memory from 1st percentile to 61st percentile; verbal memory from 3rd percentile to 93rd percentile; visual memory from 5th percentile to 14th percentile; executive function from 14th percentile to 58th percentile; and processing speed from 37th percentile to 81st percentile. Improvement had occurred in all sub-tests.

Comment: This patient is homozygous for ApoE4, and presented with amnestic MCI. She showed a clear response, both subjectively and objectively, to the metabolic protocol, and has sustained improvement over seven months.

Patient 6. A 74-year-old attorney presented with a five-year history of memory loss and word-finding difficulty. His family history was positive for dementia in his mother, beginning at the age of 75 years. He had been evaluated at an Alzheimer’s disease center at the onset of his memory loss, and was found to be ApoE4/4, with MRI showing ventricular enlargement and temporal lobe atrophy, right > left, and FDG-PET showing reduced glucose utilization in the temporal lobes and the precuneus, compatible with Alzheimer’s disease. Neuropsychological testing was compatible with a diagnosis of amnestic MCI. He was treated with donepezil, memantine, and intravenous immunoglobulin, and his MMSE fell from 27 to 23 over three years. He noted no improvement with the treatment.

He began the MEND protocol, and after six months, his MFI (phagocytosis index) was measured at 1260, with normal being >500 and most Alzheimer’s patients scoring <500 [11, 12]. His MMSE was 29. He returned three months later, his MMSE was 30, and his MFI was 1210. He then returned three months after that, complaining that he had taken a trip, gone off much of the protocol, come under stress, and he felt that his memory had declined. His MFI at that visit had dropped to 230, a typical score for a patient with Alzheimer’s disease, and his MMSE was 28. He was placed back on the protocol, and returned two months later, with MFI of 1100 and MMSE of 30. Over the ensuing 12 months, his MFI remained >1000 and his MMSE remained at 30.

Comment: This patient, homozygous for ApoE4/4, had a typical amnestic presentation and well documented Alzheimer’s disease, unresponsive to donepezil, memantine, and intravenous immunoglobulin. His MMSE improved to a perfect 30 on the metabolic protocol, where it has remained for over one year. His longitudinal MFI supports the notion that MFI may provide a “real time” method for following inflammatory/metabolic status, given the marked reduction when off the protocol with return to normal when he re-initiated the protocol.

Patient 7. A 57-year-old man began to have difficulty with memory and in work performance as a computer programmer, leading to dismissal from his job. Over the next five years his cognition continued to decline, he developed navigational difficulties, had difficulty with attention and multi-tasking, and became quieter and less self-assured. He had been a superb guitarist, and he lost both the chord progression memory and the nuance in his playing. Family history was positive for dementia in his mother, in her ninth decade. Evaluation by a neurologist included an unremarkable brain MRI without volumetrics, and he was placed on Aricept, which he discontinued after two months.

Seven years after his symptom onset, he was again evaluated, and found to be homozygous for ApoE4. An FDG PET scan was strongly suggestive of Alzheimer’s disease, with reductions in glucose utilization in the temporal, parietal, posterior cingulate, and frontal regions, with some asymmetry. He scored 22/30 on the mini-mental state examination, having lost points for failing to know the date or day, location, and failing tasks of attention and short-term recall. His BMI was 23.

A diagnosis of Alzheimer’s disease was made. His laboratory evaluation included an hs-CRP of 0.2mg/l, homocysteine 9.5μmol/l, albumin:globulin ratio of 1.6, hemoglobin A1c 5.7%, fasting insulin 4.9mIU/l, free T3 2.8pg/ml, free T4 1.3ng/l, TSH 2.1mIU/l, testosterone 281ng/dl, pregnenolone 44ng/dl, 25-hydroxychole-calciferol 38ng/ml, total cholesterol 145mg/dl (on atorvastatin), RBC magnesium 4.7mg/dl, serum copper 93mcg/dl, serum zinc 76mcg/dl, copper:zinc ratio 1.22, and AM cortisol 6.8mcg/dl. His Cyrex Array 2 was positive for gastrointestinal hyperpermeability, Cyrex Array 3 (for gluten sensitivity) was negative, and Cyrex Array 20 (for blood-brain barrier disruption) was negative.

He was placed on the MEND protocol, and his MMSE increased to 26 after four months, and to 29 after 10 months. His wife noticed clear improvement in his memory and navigation. His guitar skills improved, both his chord progressions and the nuances of his playing, such that he was able to play several pieces for the neurologist.

Comment: This patient had well documented Alzheimer’s disease, with a characteristic presentation, characteristic FDG-PET scan, and an ApoE4 homozygous genotype. For the seven years prior to beginning the MEND protocol, his cognition declined, again in keeping with the diagnosis of Alzheimer’s disease. Therefore, the chance that his MMSE improved from 22 to 26 and then to 29 over the 10 months on the protocol, as a random event unrelated to the MEND protocol, is slim. Although a score of 29 on the MMSE is within the normal range, both the patient and his wife recognize that subjectively he has not returned completely to normal, and continued optimization of his metabolic status is ongoing.

Patient 8. A 68-year-old business executive presented with a five-year history of progressive memory loss, forcing him to retire from his company. He had difficulty navigating while driving, as well. Family history was positive in his mother. He underwent amyloid PET imaging, which was positive. His ApoE genotype was 3/4.

After six months on the MEND protocol, his BMI improved from 27.7 to 24.6, and his hemoglobin A1c improved from 5.9% to 5.7%. Both he and his family noted improvement in memory and navigation. His improvement was documented by on-line neuropsychological testing (Brain HQ), which showed increase from 0 (baseline) to 2221, which represented 52nd percentile for his age.

Comment: This patient had typical Alzheimer’s disease with mnemonic and visuospatial deficits, progressive course, positive family history, ApoE4 heterozygosity, and a positive amyloid PET scan. He responded to treatment with an improvement in BMI, reduction in hemoglobin A1c, symptomatic improvements in both memory and navigation, and objective improvement in on-line neuropsychological testing.

Patient 9. This is a follow-up description of a patient presented in a previous publication [13]. A 50-year-old woman developed depression following a hysterectomy. She received hormone replacement therapy, but the depression continued. At the age of 54, she began to have word-finding difficulty, disorientation, difficulty driving, difficulty following recipes and other instructions, and memory complaints, and these problems progressed. She became quieter and slower to respond. Her depression deepened when her son left home.

She underwent neuropsychological testing, which disclosed frontal, temporal, and parietal abnormalities. A PET scan was typical for Alzheimer’s disease, with temporoparietal decreases in glucose utilization as well as a modest frontal decrease. She was placed on duloxetine, which reduced her depression, and donepezil, which improved her cognition. However, she continued to decline.

At the age of 57, she was again evaluated. Her ApoE genotype was 3/3, MoCA was 19/30, BMI was 18, hs-CRP 0.2mg/l, homocysteine 8μM, fasting insulin 4.2uIU/ml, hemoglobin A1c 5.1%, free T3 2.1pg/ml, free T4 1.33ng/dl, reverse T3 23ng/dl, fT3:rT3 9, TSH 1.16uIU/ml, progesterone 0.3ng/ml, AM cortisol 7.2mcg/dl, pregnenolone 19ng/dl, 25-hydroxycholecalciferol 37ng/ml, vitamin B12 799pg/ml, alpha-tocopherol 12.5mg/l, zinc 82mcg/l, copper 99mcg/l, copper:zinc ratio 1.2, ceruloplasmin 20mg/dl, total cholesterol 221mg/dl, HDL cholesterol 67mg/dl, non- HDL cholesterol 167mg/dl, triglycerides 82mg/dl, urinary mercury:creatinine < 2.8, Lyme antibodies negative, C4a 5547ng/ml, TGF-β1 7037pg/ml, and VEGF (vascular endothelial growth factor) 56pg/ml (normal range 31-86pg/ml). VIP (vasoactive intestinal peptide) was not evaluated. HLA-DR/DQ was 13-6-52A (mycotoxin sensitive) and 15-6-51 (Borrelia sensitive). MARCoNS (multiple-antibiotic-resistant coagulase-negative Staph) culture was negative. Anti-thyroglobulin antibodies were strongly positive at 2076IU/ml (normal range 0-0.9IU/ml) and anti-thyroid peroxidase antibodies positive at 58IU/ml (normal range 0-34IU/ml).

She was placed on the MEND protocol, and intranasal VIP (vasoactive intestinal peptide) was administered. After three months, she showed improvement. She was able to babysit her grandchildren. She was able to follow written and verbal instructions without any problems, which had not been possible prior to treatment. She was able to read and remember overnight, and discuss her reading with her husband, which she had not been able to do prior to treatment. She also routinely remembered events of the previous day, which had not occurred in the few years prior to treatment. She had a follow-up MoCA test, and scored 21/30.

Comment: This patient had progressed beyond MCI to Alzheimer’s disease, well documented by characteristic PET scan abnormalities, neuropsychological testing deficits, and progression. Despite an initial subjective response to donepezil, she continued to decline and displayed significant impairment. She was diagnosed with type 3 Alzheimer’s disease [13, 14], and laboratory data supported this diagnosis with characteristic HLA-DR/DQ and abnormal C4a and TGF-β1, as well as anti-thyroglobulin antibodies and anti-thyroid peroxidase antibodies, although MARCoNS culture was negative. After three months of therapy, she showed clear subjective improvement and modest objective improvement. Her previous three years of relentless decline argued against the possibility that the improvement was random and unrelated to her treatment.

Patient 10. A 54-year-old woman presented with a two-year history of memory loss. She noted that she did not retain new information the way she formerly had, she had to re-read information a number of times to remember it, especially technical or scientific information, and noted that her reading speed had decreased. She also noted a reduction in vocabulary, word-finding problems, and repeated use of the same word instead of using synonyms. She also noted increased difficulty with grammar and spelling, as well as loss of names of friends and of famous people. Her writing declined, her typographical errors increased, and she had difficulty remembering passwords. She had increasing difficulty driving, organizing, and with her motivation. Activities of daily living were preserved.

Her ApoE genotype was 4/4, homocysteine 7.5μmol/l, hs-CRP 0.26mg/l, albumin:globulin ratio 2.0, hemoglobin A1c 5.3%, fasting insulin 2.7mIU/l, fasting glucose 81mg/dl, alpha-tocopherol 18.3mg/l, and 25-hydroxycholecalciferol 188ng/ml.

On-line quantitative neuropsychological testing disclosed a composite memory score at the 32nd percentile, visual memory at 10th percentile, and verbal memory at 73rd percentile. This testing was repeated after four months on the protocol, at which time the composite memory score was at the 61st percentile, visual memory score at the 25th percentile, and verbal memory score at the 84th percentile.

Comment: This person, who is homozygous for the ApoE ε4 allele, demonstrated both subjective and objective evidence of cognitive decline, with preserved activities of daily living, and thus would fit best with a diagnosis of mild cognitive impairment. After four months on the protocol, repeat on-line quantitative neuropsychological testing revealed improvements in visual and verbal memory. Although these improvements were relatively modest, they are in contrast to the natural history of progressive decline in cognition for MCI associated with ApoE4 homozygosity.

DISCUSSION

These observations provide further support for the previously reported finding that the personalized protocol for metabolic enhancement (note that the metabolic evaluation included parameters shown to affect Alzheimer’s disease pathophysiology, such as homocysteine [15], glucose [16], and inflammation [17], as well as numerous others as previously described [3]) in Alzheimer’s disease leads to the reversal of cognitive decline in at least some patients with early Alzheimer’s disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment). To our knowledge, the magnitude of the improvements documented in patients 1 and 2 is unequaled in previous reports: in patient 1, the increase in hippocampal volume from 17th percentile to 75th percentile supports the marked symptomatic improvement that he (and others) achieved on the protocol. In patient 2, quantitative neuropsychological testing demonstrated improvements of up to three standard deviations (CVLT-IIB, from 3rd percentile to 84th percentile), with multiple tests all showing marked improvements. These findings complement and support the marked subjective improvement already published for this patient [3].

It is noteworthy that these patients met criteria for Alzheimer’s disease or MCI prior to treatment, but failed to meet criteria for either Alzheimer’s disease or MCI following treatment—i.e., following treatment, most had returned to the normal range for their cognitive testing. Furthermore, as noted in the initial description of the protocol used here [3], discontinuation of the protocol was associated with cognitive decline (here, in patient 1). It is not yet known for how many months or years the marked improvements will be sustained, but loss of improvement in patients maintaining the protocol has not yet been observed, and follow-ups of up to four years have now occurred.

The hippocampal volumetric increase observed for patient 1 does not discriminate between the possibility that synaptic number increased, or glial cell number or volume increased, or endogenous stem cell survival increased, or neuronal cell number or volume increased, or the vascular compartment increased, or some combination of these possibilities. This volumetric increase, and the marked symptomatic improvement that accompanied it, raises the question of whether it is possible that the patient’s diagnosis of mild cognitive impairment associated with Alzheimer’s disease was incorrect. However, the diagnostic evaluation makes this possibility extremely unlikely: given the strong family history of dementia, the ApoE4 heterozygosity, markedly positive amyloid PET scan, the FDG-PET scan characteristic of Alzheimer’s disease with reduced glucose utilization in a temporoparietal distribution, the abnormal neuropsychological testing, and the MRI showing hippocampal volume at 17th percentile for age, the possibility that the underlying pathological process was something other than Alzheimer’s disease is remote. Thus it would be expected that hippocampal volume would decrease over time, and that cognitive decline would occur. Therefore, the likelihood that his improvement was random and unrelated to the intervention is extremely low.

Similarly, for patient 2, it is highly unlikely that the diagnosis of Alzheimer’s disease was incorrect: the ApoE4-positive genotype, the FDG-PET scan typical of Alzheimer’s disease with temporoparietal reduction in glucose utilization, the pattern and severity of quantitative neuropsychological abnormalities, and the well documented progressive nature of the deficits all provide strong support for the diagnosis of Alzheimer’s disease. Furthermore, the severity of the abnormalities documented by the quantitative neuropsychological assessment was also compatible with the diagnosis of Alzheimer’s disease. The variations that may occur when different examiners perform the same set of quantitative neuropsychological tests is an obvious concern when there is a significant change in the results of the tests in one subject. However, in this case, the same examiner performed the same set of tests in each instance, arguing against the possibility that the major improvement observed was simply the result of examiner-related variability. The magnitude of the improvement also argued against this possibility.

In each of these cases, obvious subjective improvement, noted by the patient, his/her significant other, and his/her co-workers, was accompanied by clear, quantitated, objective improvement. In the cases of patients 1 and 2, the improvement was of a magnitude not reported previously for patients with Alzheimer’s disease. None of the 10 patients exhibited the cognitive decline that is characteristic of Alzheimer’s disease, and the improvement experienced by all 10 has been sustained, with the longest time on the program being four years.

It has been claimed that there is nothing that will prevent, delay, or reverse Alzheimer’s disease (www.nih.gov/news-events/news-releases/independent-panel-finds-insufficient-evidence-support-preventive-measures-alzheimers-disease. Therefore, it is typically recommended that the ApoE genotype, which represents the most important genetic risk factor for Alzheimer’s disease, not be evaluated in asymptomatic individuals, and many physicians do not evaluate ApoE genotype even in symptomatic patients. However, the examples described here complement and extend previously published data that argue that these claims are no longer valid. Thus, given the success of the therapeutic regimen used with these patients, it may be appropriate to evaluate the ApoE genotype as part of prevention and early reversal of symptoms. Given the approximately 75 million Americans who are heterozygous for the ApoE ε4 allele, and the approximately seven million Americans who are homozygous, early identification and treatment (presymptomatic or symptomatic) could potentially have a major impact on the prevalence of Alzheimer’s disease-mediated cognitive decline.

ACKNOWLEDGEMENTS

I thank Dr. Rammohan Rao, Dr. Aida Lasheen Bredesen, and Dr. Alexei Kurakin for discussions, and Ms. Rowena Abulencia for preparing the manuscript.

Funding

I am grateful for support from James and Phyllis Easton, the NIH (AG16570, AG034427 and AG036975), the Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, the Douglas and Ellen Rosenberg Foundation, the Stephen D. Bechtel, Jr. Foundation, the Joseph Drown Foundation, the Alzheimer’s Association, the Accelerate Fund, the Buck Institute and Marin Community Foundation, the Michael and Catherine Podell Fund, Mr. Craig Johnson, Mr. Allan Bortel, Mr. Wright Robinson, Mr. Jeffrey Lipton, Mr. Lawrence Dingus, and Ms. Michaela Hoag.

Conflict of interest statement

The author of this manuscript declares no conflict of interest.

REFERENCES

  1. James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K and Bennett DA. Contribution of Alzheimer disease to mortality in the United States. Neurology. 2014; 82:1045-50.
  2. Seshadri S, Drachman DA and Lippa CF. Apolipoprotein E epsilon 4 allele and the lifetime risk of Alzheimer’s disease. What physicians know, and what they should know. Arch Neurol. 1995; 52:1074-79.
  3. Bredesen DE. Reversal of cognitive decline: A novel therapeutic program. Aging (Albany NY). 2014; 6:707-17. doi: 10.18632/aging.100690.
  4. Kurakin A and Bredesen DE. Dynamic self-guiding analysis of Alzheimer’s disease. Oncotarget. 2015; 6:14092-14122. doi: 10.18632/oncotarget.4221.
  5. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA, Chevallier N, Jin K, Greenberg DA and Bredesen DE. Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci U S A. 2006; 103:7130-35.
  6. Bredesen DE, John, V. Next generation therapeutics for Alzheimer’s disease. EMBO Mol Med. 2013; 5:795-98.
  7. Ross DE, Ochs, A.L., Seabaugh, J., Henshaw, T. NeuroQuant® revealed hippocampal atrophy in a patient with traumatic brain injury. J Neuropsychiatry Clin Neuroscience. 2012; 24:1:33.
  8. Ahdidan J, Raji CA, DeYoe EA, Mathis J, Noe KO, Rimestad J, Kjeldsen TK, Mosegaard J, Becker JT and Lopez O. Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging. J Alzheimers Dis. 2015; 49:723-32.
  9. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011; 108:3017-22.
  10. Fotuhi M, Lubinski B, Trullinger M, Hausterman N, Riloff T, Hadadi M, Raji CA. A personalized 12-week “Brain Fitness Program” for improving cognitive function and increasing the volume of hippocampus in elderly with mild cognitive impairement. The Journal of Prevention of Alzheimer’s Disease. 2016.
  11. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiappelli F, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005; 7:221-232; 255-62.
  12. Masoumi A, Goldenson B, Ghirmai S, Avagyan H, Zaghi J, Abel K, Zheng X, Espinosa-Jeffrey A, Mahanian M, Liu PT, Hewison M, Mizwickie M, Cashman J, et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2009; 17:703-17.
  13. Bredesen DE. Metabolic profiling distinguishes three subtypes of Alzheimer’s disease. Aging (Albany NY). 2015; 7:595-600. doi: 10.18632/aging.100801.
  14. Bredesen DE. Inhalational Alzheimer’s disease: an unrecognized – and treatable – epidemic. Aging (Albany NY). 2016; 8:304-13. doi: 10.18632/aging.100896.

AGING Journal

Source: Reversal of cognitive decline in Alzheimer?s disease – AGING Journal

Alzheimer’s disease is one of the most significant healthcare problems nationally and globally. Recently, the first description of the reversal of cognitive decline in patients with early Alzheimer’s disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment), was published [1]. The therapeutic approach used was programmatic and personalized rather than monotherapeutic and invariant, and was dubbed metabolic enhancement for neurodegeneration (MEND). Patients who had had to discontinue work were able to return to work, and those struggling at work were able to improve their performance. The patients, their spouses, and their co-workers all reported clear improvements. Here we report the results from quantitative MRI and neuropsychological testing in ten patients with cognitive decline, nine ApoE4+ (five homozygous and four heterozygous) and one ApoE4-, who were treated with the MEND protocol for 5-24 months. The magnitude of the improvement is unprecedented, providing additional objective evidence that this programmatic approach to cognitive decline is highly effective. These results have far-reaching implications for the treatment of Alzheimer’s disease, MCI, and SCI; for personalized programs that may enhance pharmaceutical efficacy; and for personal identification of ApoE genotype.

Source: Reversal of cognitive decline in Alzheimer?s disease – AGING Journal

About half the time, he provides his seed the old-fashioned way. Sometimes, a lesbian looking to conceive will have her partner in the bed for moral support while she and Nagel engage in intercourse.

“She’s never slept with a guy before, so the partner’s in bed, holding her hand,” Nagel explains. “Sometimes, it could be a little painful, then after a few times, they’re comfortable to do it on their own.”

Other times, he supplies his goods in a cup, which he prefers.

Modal Trigger

“I’m not doing it for easy action,” Nagel says. “Isn’t that what Tinder is for?”

He often uses public bathrooms, like those at Target and at Starbucks shops, to procure his samples and hand them off to ovulating women.

“You don’t want to do it in one where people are knocking,” he notes.

He will also offer his services in his home near Downtown Brooklyn, but mama wannabes are often more comfortable meeting in public.

Once a location is chosen, Nagel will go into the bathroom, pleasure himself while watching porn on his iPhone — “You can’t connect to Target Wi-Fi if you’re connecting to a porn site, so I use my cell service,” he says — and ejaculate into an Instead Softcup, a type of menstrual cup.

He then delivers the specimen to the woman, who goes into the ladies’ restroom and inserts it into her cervix.

“I can keep it in for 12 hours,” says Dege, a 40-year-old lesbian from The Bronx who was one of the women meeting Nagel at the Target last week.

Dege, who declined to give her last name, had tried a few times before using Nagel’s sperm, but hadn’t yet conceived.

This time might do the trick. The prolific professor is often successful, which he attributes to a high sperm count: 85 million per milliliter.

“It’s off the charts,” he boasts. “The clinic said they’ve never seen anything like it.”

(The Mayo Clinic says normal sperm density ranges from 15 million to greater than 200 million sperm per milliliter.)

Nagel made his first foray into professional baby-making eight years ago with a friend — a single, straight Jewish woman in her late 30s and living on the Upper West Side.

“I actually tried to fix her up. I had a friend who I thought would be a better match as a sperm donor,” he says. “He got cold feet at the last minute.”

So Nagel went with the woman to the fertility clinic.

Then he helped out two lesbians seeking a donor on Craigslist. Other women have heard about him through friends and Known Donor Registry, a free website for those looking for sperm donors.

‘I’m not doing it for easy action. Isn’t that what Tinder is for? … I just love seeing how happy the moms and kids are. It’s the gift that keeps on giving.’

 – Ari Nagel

Women who have used Nagel’s services — which he provides for free — say his good looks, personality and high sperm count are a draw.

“He’s a lot of fun to be around, he loves people, he’s outgoing, and he’s gorgeous,” says Tiffany Harrison, 41, of New Jersey, who with her wife, Yvonne, has a toddler daughter, Zoe, sired by Nagel.

As for his own motivations, the big daddy insists he just likes spreading his seed.

“I just love seeing how happy the moms and kids are . . . That’s why I do this,” he says. “It’s the gift that keeps on giving.”

And Nagel, who grew up in an Orthodox Jewish family with six siblings, says he gets the benefits of having a large brood without the hassle.

“I feel like [I’m] getting all the joy, but also getting a good night’s rest,” he says.

Nagel has a Facebook album of photos of his kids and regularly baby-sits and attends birthday parties and graduations. He has even been present for a handful of deliveries.

“Single women prefer me to their mom,” he claims.

Nagel says his name appears on the birth certificate for just under half of his offspring. Some take his surname, and there’s even an Ari Jr. and two Arias. A few families have used him multiple times.

“A lot of them want another sibling for the [first] child,” he says.

Modal Trigger
Nagel with client Kanisha Butler and Aarore, the daughter he helped conceive.Photo: Kanisha Butler

And Nagel’s seed-sowing isn’t a drain on his love life. He doesn’t make a point of mentioning it on dates, but when it comes up, ladies typically don’t mind.

Modal Trigger
Nagel with satisfied customer Shaniece Cromer of The Bronx and her 11-month-old daughter, Taraji.Photo: Shaniece Cromer

“Never underestimate the desperation of a single woman on the Upper West Side,” he says.

But it’s not all sunshine and babies.

The first five women he worked with successfully sued him for child support, and nearly half of his paycheck is garnished for his offspring.

“I don’t know what’s more surprising: that five sued or that 17 didn’t,” Nagel says. “They were all well aware there was no financial obligation on my part. They all promise in advance they won’t sue.”

Crystal, a Connecticut woman who has two sons, 6 and 7, by Nagel, says she wasn’t aware of any such arrangement.

The 45-year-old mom, who took Nagel to court for child support, says that she was expecting to co-parent with him and that she didn’t know of his plans to father an entire baseball team.

“My kids got left in the dust,” says the woman, who conceived both boys through intercourse. “You can’t co-parent with 20-something kids.”

(The other four who sued could not be reached or had no comment.)

Modal Trigger
Tiffany Harrison of New Jersey holds her daughter Zoe — sired by Nagel — joined by wife Yvonne.Photo: Stephen Yang

The big daddy says that the angry moms are just hungry for money and that there was no misunderstanding.

“I think they went in with the intention to sue,” he claims.

Still, he hasn’t bothered taking preventative legal measures, because such agreements are rarely binding.

Less-contentious baby-mama drama can begin well before a kid is born.

“Two women can be surging [highly fertile] the same day,” he says. “I have to make a decision. Do I go with the 45-year-old because she’s running out of time and every month makes a difference? Or do I go with the 30-year-old who says, ‘Am I chopped liver?’?”

And it continues as the kids grow.

“Some of the mothers, they have attitudes,” says Shaniece Cromer, a Bronx single mom to an 11-month-old girl, Taraji, whom she conceived with Nagel via in-vitro fertilization. “The jealous moms feel like their kids don’t get enough time with him.”

Nagel’s progeny isn’t limited to the tri-state area. He has kids in Florida, Illinois, Virginia, Connecticut and Israel. Some he sees once a week, some he sees once a year, some he’s never met.

Despite the court cases and child-support payments, Nagel says he has no regrets. He’s open to more kids and says he’s in talks with several women looking to conceive, although he admits he’s getting a bit old for the job.

“Financially, it’s bankrupted me, but I’m still very happy with the way things turned out,” he says. “I got 22 million in the bank — in my kids.”

On a busy night last week at the Target on Atlantic Avenue in Brooklyn, Ari Nagel, 40, emerged from the men’s bathroom looking a little flushed and quite pleased with himself. “It’s better when

Source: Professor who donates sperm in city bathrooms has sired 22 kids | New York Post

The end is near: Peter Schiff

“If you’re going to be prepared, you need to know Peter Schiff’s case.” – Jim Rogers “Nothing can compare to what’s coming. Peter Schiff is right again.” – Ron Paul “Disagree with Peter Schiff at your own peril. In many ways, he’s a genius.” – Ben Stein

Source: Wall Street Daily

Lithium Explained

Lithium, Explained

Lithium prices have soared as battery-dependent industries like electric vehicles and renewable energy have entered a renaissance. In China, lithium carbonate, the material used in battery production, is up more than 75% over the past year.1 Despite the excitement around this natural resource, lithium contracts do not trade on futures markets (like gold or oil), and therefore finding information and investing in the metal can be more nuanced than with other commodities.

The following analysis seeks to shed light on lithium by answering 7 questions:

  1. What is Lithium?
  2. How is Lithium used?
  3. Where does the demand for Lithium come from?
  4. What is Tesla’s impact on Lithium?
  5. How and from where is Lithium Mined or Extracted?
  6. What are the potential future prospects for Lithium?
  7. How can someone invest in Lithium?

What is Lithium and How Is It Used?

Lithium is the world’s lightest metal and has been dubbed “white petroleum” due to its common usage in state-of-the-art batteries. As demonstrated in the table below, lithium-ion is lighter, more efficient, and more durable than other competing technologies. This makes it a desirable choice for energy storage, particularly in vehicles and consumer electronics where weight and heavy usage is a significant consideration. These applications can include electric and gasoline hybrid vehicles, mobile phones, laptops, power tools and cameras, among other things.

LIT-160526-Comparison_Battery_Tech

It is important to note that despite lithium’s common association with batteries, over 60% of current lithium demand comes from industrial applications, such as glass, ceramics, lubricants, and casting powders, as demonstrated in the chart below. However, much of the expected demand growth and optimism for lithium comes from the battery segment.

LIT-160526-Lithium_Carbonate_Equivalent

Source: Citi Research Estimates for 2016.

Where Does the Demand for Lithium Come From?:

The biggest opportunity for lithium demand is expected to come from electric vehicles. According to Citi Research, an average electric car uses over 5,000 times more lithium than a mobile phone to power the vehicle’s range. Higher range electric cars, like the Tesla Model S, can use as much lithium as 10,000 smartphones.2 Therefore growth of the electric car market can have a significant impact on total lithium demand.
LIT-160526-Lithium_Per_Unit

In 2015, car production consumed 15,000 tons of lithium, but by 2025 analysts expect this number to reach 136,000 tons, as electric and hybrid cars become more prevalent in the face of the clean energy technology movement.

LIT-160526-Lithium_Demand_Forecast

Source: Citi Research, 2015.

According to SignumBOX, lithium accounts for less than 3% of the total costs of a lithium-ion battery.4  Given its relatively small influence on a battery’s economics, overall lithium-ion battery prices could fall from gains in production efficiencies, while lithium prices rise from increasing battery demand. Tesla, for example, believes that their Gigafactory will cut its battery costs by 30% by relying on economies of scale to improve efficiency.5 Therefore there is a negative cross elasticity of demand between lithium and battery prices that could result in rising lithium consumption and prices, while batteries get more affordable and common.

What is Tesla’s Impact on Lithium?

Tesla’s recently announced Model 3 received over 400,000 preorders (representing $14 billion in sales)6, while the company’s home Powerwall battery pack received over $800 million in presale orders.7 By the time Tesla’s Gigafactory is operating at full capacity, Tesla may consume 17% of total global lithium supply.8

Another important market for lithium demand will be China, which saw a 223% year-over-year increase in electric vehicle sales in 2015.9

How and from Where is Lithium Mined or Extracted?

Lithium deposits are most prevalent in South America, particularly in Bolivia, Chile, and Argentina, which together represent over 64% of the world’s reserves. China controls approximately another 26% of the world’s deposits.10 Currently, production in the lithium market operates under an oligopoly structure, with only a few companies controlling the vast majority of supply. However, new market participants have entered over the last few years as both lithium prices and demand have risen.

Lithium comes from two main sources: brine and hard rock. Brine deposits are found in salt lakes and lithium is extracted through an evaporation process. Brine harvesting is more common and often considered a simpler method of extraction, but generally of lower grade. Hard rock lithium mining requires geological surveys and drilling through rock, which can increase costs, but also often results in higher grades.11

There are 16 lithium projects estimated to begin production between 2016 and 2020. The majority of these are hard rock projects, which have the ability to come online relatively quickly given their shorter production lead times. Current hard rock projects require an average of 5 years of capital expenditures prior to production and an average mine life of 16 years. Brine projects require an average of 6 years of capital expenditures prior to production, but enjoy a longer life estimate of 30 years.12

Based on production estimates by existing producers, there is expected to be a shortfall in the supply of lithium at least through the rest of this decade. Historically, supply shortfalls in a commodity lead to upward pressure in the underlying resource’s price. Estimates place the world’s lithium reserves at 183 years of remaining supply13, but given the time it takes to bring a new project to market, supply and demand forces could push medium-term lithium prices higher.

LIT-160526-Lithium_Supply_Demand

*Supply Total with Existing Producers

Source: Citi Research, 2015.

What are the Potential Future Prospects for Lithium?

There are three important trends that will continue to provide support for lithium demand growth over the coming years:

  1. Electric vehicles powered by lithium batteries continue to see scaling production levels and committed capital investments. By 2040, electric vehicles are expected to reach 35% of all new vehicle sales, as costs for lithium ion batteries decrease with improving technology.14
  2. Evolving consumer habits continue to drive increased mobile device adoption. Globally, mobile phone usage is expected to grow at an annualized rate of 3.4% from 2016 to 2019.15
  3. Electric grids continue to utilize lithium batteries as a method of energy storage, particularly for renewable sources like solar and wind. Demand for lithium batteries in energy storage is expected to grow at an annualized rate of 97% from 2016 to 2020.16

How Can Someone Invest in Lithium?

Unlike most commodities, lithium does not trade on futures exchange. Therefore, measuring changes in spot lithium prices or betting on future prices must be done through indirect exposure. One way to achieve this exposure is to invest in companies involved in various parts of the lithium cycle, which includes lithium mining, refining, and battery production. The Global X Lithium ETF (LIT) invests in companies involved in each stage of the lithium cycle and wraps this strategy in an ETF, allowing for efficient access to companies with high exposure to lithium.

Lithium prices have soared as battery-dependent industries like electric vehicles and renewable energy have entered a renaissance.

Source: Lithium Explained

The upper middle class grew to 29.4 percent of the population in 2014, up from 12.9 percent in 1979. The rich – those making $350,000 or more – also grew, from 0.1 percent of the population in 1.8 percent of the population. The middle class, however – once considered the backbone of the American economic order – shrunk from 38.8 percent to 32 percent of the population during the same time. The Urban Institute, a liberal-leaning think tank, defines the middle class as those making $50,000 to $100,000 per year. The lower middle makes $30,000 to $50,000 per year, those defined as “poor” make less than $30,000 per year.

Source: American Upper Middle Class Thriving, Report Argues | US News

What they found was this: Doctors who received even one industry-sponsored meal–with a mean value of less than $20–prescribed the promoted brand-name med “at significantly higher rates” to Medicare patients.

Source: Hey, doc, how about a burger with a side of branded drug scripts? | FiercePharma

16 other states that fully spare military pension income from state income taxation

Source: A wasteful Minnesota tax break on military pensions – StarTribune.com

Israel has admitted for the first time that it has been giving Ethiopian Jewish immigrants birth-control injections, often without their knowledge or consent.

The government had previously denied the practice but the Israeli Health Ministry’s director-general has now ordered gynaecologists to stop administering the drugs. According a report in Haaretz, suspicions were first raised by an investigative journalist, Gal Gabbay, who interviewed more than 30 women from Ethiopia in an attempt to discover why birth rates in the community had fallen dramatically.

One of the Ethiopian women who was interviewed is quoted as saying: “They [medical staff] told us they are inoculations. We took it every three months. We said we didn’t want to.” It is alleged that some of the women were forced or coerced to take the drug while in transit camps in Ethiopia.

The drug in question is thought to be Depo-Provera, which is injected every three months and is considered to be a highly effective, long-lasting contraceptive.

Nearly 100,000 Ethiopian Jews have moved to Israel under the Law of Return since the 1980s, but their Jewishness has been questioned by some rabbis. Last year, the Prime Minister, Benjamin Netanyahu, who also holds the health portfolio, warned that illegal immigrants from Africa “threaten our existence as a Jewish and democratic state”.

Haaretz published an extract from a letter sent by the Ministry of Health to units administering the drug. Doctors were told “not to renew prescriptions for Depo Provera for women of Ethiopian origin if for any reason there is concern that they might not understand the ramifications of the treatment”.

Sharona Eliahu Chai, a lawyer for the Association of Civil Rights in Israel (ACRI), said: “Findings from investigations into the use of Depo Provera are extremely worrisome, raising concerns of harmful health policies with racist implications in violation of medical ethics. The Ministry of Health’s director-general was right to act quickly and put forth new guidelines.”

 

Israel has admitted for the first time that it has been giving Ethiopian Jewish immigrants birth-control injections, often without their knowledge or consent.

Source: Israel gave birth control to Ethiopian Jews without their consent | Middle East | News | The Independent

  • Monday, January 28, 2013
  • Elder of Ziyon
This troubling story has been all over the place, all from this Ha’aretz article claiming that Israeli officials admit to giving contraceptive injections to Ethiopian women without their permission.

But what does the article actually say?

A government official has for the first time acknowledged the practice of injecting women of Ethiopian origin with the long-acting contraceptive Depo-Provera.

Health Ministry Director General Prof. Ron Gamzu has instructed the four health maintenance organizations to stop the practice as a matter of course.

The ministry and other state agencies had previously denied knowledge or responsibility for the practice, which was first reported five years ago.

Gamzu’s letter instructs all gynecologists in the HMOs “not to renew prescriptions for Depo-Provera for women of Ethiopian origin if for any reason there is concern that they might not understand the ramifications of the treatment.”

He also instructed physicians to avail themselves of translators if need be.

Gamzu’s letter came in response to a letter from Sharona Eliahu-Chai of the Association of Civil Rights in Israel, representing several women’s rights and Ethiopian immigrants’ groups. The letter demanded the injections cease immediately and that an investigation be launched into the practice.

About six weeks ago, on an Educational Television program journalist Gal Gabbay revealed the results of interviews with 35 Ethiopian immigrants. The women’s testimony could help explain the almost 50-percent decline over the past 10 years in the birth rate of Israel’s Ethiopian community. According to the program, while the women were still in transit camps in Ethiopia they were sometimes intimidated or threatened into taking the injection. “They told us they are inoculations,” said one of the women interviewed. “They told us people who frequently give birth suffer. We took it every three months. We said we didn’t want to.”

First of all, Israeli doctors admitted offering Depo-Provera years ago to those who want it. In June 2008, the health minister of the time, Yaacov Ben Yezri, “said the high number of Ethiopians in Israel using the drug reflected a ‘cultural preference’ for injections among Ethiopians.” Whether this is true or not, it shows that Ha’aretz is sloppy already in the first paragraph – they meant to claim that Israel acknowledged injecting the drug without permission.

But does that memo really say that?

The TV special that claimed that these women were coerced into taking the drug aired about six weeks ago. Isn’t it possible that this memo was more to show caution that there might have been some women who misunderstood the use of the drug or the options they have for birth control? That’s the way the quoted part reads tome. It certainly doesn’t admit that Israeli doctors were conspiring to sterilize Ethiopian women, as Ha’aretz alleges – and as other media have willingly published.

Now let’s look at the earlier article about the TV investigation:

Women who immigrated from Ethiopia eight years ago say they were told they would not be allowed into Israel unless they agreed to be injected with the long-acting birth control drug Depo Provera, according to an investigative report aired Saturday on the Israel Educational Television program “Vacuum.”

The women say that while waiting in transit camps in Ethiopia prior to immigration they were placed in family planning workshops where they were coaxed into agreeing to the injection – a charge denied by both the Joint Distribution Committe, which ran the clinics, and the Health Ministry.

“We said we won’t have the shot. They told us, if you don’t you won’t go to Israel And also you won’t be allowed into the Joint (American Joint Distribution Committee) office, you won’t get aid or medical care. We were afraid… We didn’t have a choice. Without them and their aid we couldn’t leave there. So we accepted the injection. It was only with their permission that we were allowed to leave,” recounted Emawayish, who immigrated from Ethiopia eight years ago.

Emawayish was one of 35 women, whose stories were recorded by Sebba Reuven, that relate how they were coaxed and threatened into agreeing to receive the injectable birth control drug.

The birth rate among Israel’s Ethiopian immigrant population has dropped nearly 20 percent in 10 years.

According to the report, the women were given the Depo Provera injections in the family planning workshops in transit camps, a practice that continued once they reached Israel. The women who were interviewed for the investigation reported that they were told at the transit camps that having many children would make their lives more difficult in Ethiopia and in Israel, and even that they would be barred from coming to Israel if they refused.

If true, this is indeed terrible. But the denials in that program were no less emphatic:

The Joint said in a response to “Vacuum” that its family planning workshops are among the services it provides to immigrants, who learn about spacing out their children’s birth, “but we do not advise them to have small families. It is a matter of personal choice, but we tell them it is possible. The claims by the women according to which ‘refusal to have the injection will bar them from medical care [and] economic aid and threaten their chances to immigrate to Israel are nonsense. The medical team does not intervene directly or indirectly in economic aid and the Joint is not involved in the aliyah procedures. With regard to the use of Depo Provera, studies indicate that is the most popular form of birth control among women in Ethiopia,” the Joint said.

In its response to “Vacuum,” the Health Ministry said it did not “recommend or try to encourage the use of Depo Provera, and that if these injections were used it was against our position. The Health Ministry provides individual family counseling in the framework of its well baby clincs and this advice is also provided by the physicians of the health maintenance organizations.”

The Jewish Agency, which is responsible for Jewish immigration from abroad, said in response that it takes a harsh view of any effort to interfere in the family planning processes of Ethiopian immigrants, adding that “while the JA has never held family planning workshops for this group in Ethiopia or at immigrant absorption centers in Israel, the immigrant transit camp in Gondar, as the investigation noted, was previously operated by other agencies.”

Three separate organizations on two continents are accused of performing the same reprehensible practice, a practice that would involve an unusual amount of collusion and conspiracy. But not one doctor from these agencies has come forward to verify the claims.

Yet another denial was published in a blog when the report first came out, from a doctor at The Joint:

JDC runs the medical program in Gondar for potential immigrants to Israel. As part of this, we offer voluntary contraception to our population. Our clinic offers both birth control pills and injectable contraception. If a woman prefers another method of contraception such as implantable or tubal ligation, we send them to facilities down the road in the city of Gondar for this.

Women come to the program because they desire family planning. We present the various options to them and they choose. So women both choose to use contraception and choose their method. And choose when to discontinue contraception. It has always been that way in our program.

Right now we’re caring for about 4500 potential immigrants to Israel. We average about 85 family planning visits each month.

We do not inform the Israeli authorities who is on family planning, and I have no idea what happens once they arrive in Israel.

Regarding the rate of 30% reported some years ago, we offered family planning to the population at a time when it was less available to the general public, and our population chose to use it.

At present, the rate of modern contraceptive use in Amhara Region is 33% indicating a significant demand, as contraceptive services have become more available to the public. Even now, there is an unmet demand for contraceptive services in this region of over 20%. To give you an idea of the rise in this service, in 2005, 15.7% used modern contraception in Amhara region.

Injectable contraceptives are the most desired throughout the country. They are easy, culturally preferred, and offer the ability to be on birth control without a woman informing her husband, which is an issue here.

I appreciate the chance to set this record straight.

Best wishes,

Rick Hodes, MD, MACP
Medical Director, AJJDC-Ethiopia

Update 9:50 am CST – I followed up with Dr. Hodes to make sure there was no mistake about what he was saying:

“So to be clear, you’re saying that you personally never told any woman that she would have to take Depo-Provera shots in order to immigrate to Israel? The women claim that JDC workers from Israel told them they had to do it. Is that claim to the best of your knowledge false?”

Dr. Hodes replied:

To the best of my knowledge, this claim is 100% false.

Neither myself nor my staff have ever told any women in our program that they should take Depo-Provera for any reason. 100% of Depo-Provera shots are purely voluntary, and may be discontinued (or changed to another method) at any time.

In fact, we don’t have JDC workers from Israel come and tell women
these things.

So how can these contradictory claims be reconciled? The idea that the Joint, the Jewish Agency and the Health Ministry are all lying might work for anti-Israel conspiracy theorists, but it is hardly credible.

My guess – and it is only a guess – is that Ethiopian women were generally enthusiastic about the idea of birth control. And as Dr. Hodes says, the idea of injectable contraception was appealing to them – because they don’t have to tell their husbands.

This is the key to understanding the story. The Ethiopian husbands would generally be averse to their wives taking birth control, so they must do it in secret – and the Depo-Provera is by far the best method to keep their husbands from knowing. They simply tell them that they were receiving inoculations or some other excuse.

Now, when the men start getting suspicious as to why they aren’t having kids, how many of the wives will admit that they are secretly taking contraception? It is much easier to come up with a story about how it all happened without their knowledge, or how they were forced to do it against their will.

I am not denying that there is racism in Israel, just as there is everywhere else. I can certainly believe that some Israeli doctors may be more likely to recommend the Depo-Provera injection for black women than their whiter patients. I can believe that the frustration of not being able to communicate can result in sub-par care, and in not explaining the contraceptive options that they have. It is very possible that the doctors did not properly inform the women of the (sometimes serious) side effects that Depo-Provera has. The TV program helped expose these fissures in the care being given to Ethiopian women. This would naturally result in the Gamzu memo that Ha’aretz reported so eagerly.

The idea that doctors – especially in doctors who willingly travel to Ethiopia, people who would be among the most dedicated medical professionals on the planet – would conspire to effectively sterilize black women is simply not plausible.

Ha’aretz, and the gullible hateful media that follows it slavishly, was actively trying to demonize Israeli health officials and organizations that are dedicated to helping people – in order to report a scoop. The facts that we are aware of today, however, do not add up to the claims being made.

Perhaps my theory isn’t 100% correct. I’m the first to admit that we don’t have all the facts. But what I am suggesting fits the facts we do know much better than the yellow journalism being practiced in this case.

UPDATE: Mordy in the comments points to a 2005 study that says exactly what I was guessing:

Because contraceptives may introduce social discord, leading at times to intimate partners’ violence amongst African couples, women of low bargaining powers often resort to family planning methods that are suitable to covert use.

Women can take injections of Depo-Provera while visiting a health facility and remain protected against unwanted pregnancies for three months. This may be done without their husband’s knowledge and without the bother of having to remember to take the pill or to undergo clinical procedures that are involved when opting for implants or intrauterine devices. Consequently, a general pattern that has been observed in the contraceptive method mix in sub-Saharan Africa and elsewhere in the developing world is the predominance of injectables.

If a reporter visits one or fifty of these women and asks if they took the injections voluntarily, what do you think they would say?

UPDATE 2: Reuters did a tiny bit of actual reporting and asked Gamzu whether his memo was an admittance that Israel is forcibly giving the drug to Ethiopian women:

Ministry Director-General Roni Gamzu said the decision did not imply he accepted the allegations by the Association of Civil Rights in Israel (ACRI).

Ha’aretz’ misinterpretation of the memo, as I wrote above, was the linchpin for the entire story.

This is looking more and more like Ha’aretz’ version of the “Racist Jews steal organs from Arabs and Haitians” story that the anti-semites love to push

Source: Did Israelis force contraception on Ethiopian women? (UPDATE x2) ~ Elder Of Ziyon – Israel News

A 2-year-old boy who was attacked and dragged into the water by an alligator on the shores of Disney’s Grand Floridian Resort & Spa Tuesday night was still missing early Wednesday morning.

Source: Alligator attacks boy at Disney’s Grand Floridian, deputies say – Orlando Sentinel

Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP
Chen Xu, Junhua Zhang, Doina M. Mihai, Ilyas Washington

ABSTRACT

Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5′-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight.

INTRODUCTION

Determining how organisms obtain energy from the environment is fundamental to our understanding of life. In nearly all organisms, energy is stored and transported as adenosine-5′-triphosphate (ATP). In animals, the vast majority of ATP is synthesized in the mitochondria through respiration, a catabolic process. However, plants have co-evolved endosymbiotically to produce chloroplasts, which synthesize light-absorbing chlorophyll molecules that can capture light to use as energy for ATP synthesis. Many animals consume this light-absorbing chlorophyll through their diet. Inside the body, chlorophyll is converted into a variety of metabolites (Ferruzzi and Blakeslee, 2007; Ma and Dolphin, 1999) that retain the ability to absorb light in the visible spectrum at wavelengths that can penetrate into animal tissues. We sought to elucidate the consequences of light absorption by these potential dietary metabolites. We show that dietary metabolites of chlorophyll can enter the circulation, are present in tissues, and can be enriched in the mitochondria. When incubated with a light-capturing metabolite of chlorophyll, isolated mammalian mitochondria and animal-derived tissues, have higher concentrations of ATP when exposed to light, compared with animal tissues not mixed with the metabolite. We demonstrate that the same metabolite increases ATP concentrations, and extends the median life span of Caenorhabditis elegans, upon light exposure; supporting the hypothesis that photonic energy capture through dietary-derived metabolites may be an important means of energy regulation in animals. The presented data are consistent with the hypothesis that metabolites of dietary chlorophyll modulate mitochondrial ATP stores by catalyzing the reduction of coenzyme Q. These findings have implications for our understanding of aging, normal cell function and life on earth.

RESULTS

Light-driven ATP synthesis in isolated mammalian mitochondria

To demonstrate that dietary chlorophyll metabolites can modulate ATP levels, we examined the effects of the chlorophyll metabolite pyropheophorbide-a (P-a) on ATP synthesis in isolated mouse liver mitochondria in the presence of red light (λmax = 670 nm), which chlorin-type molecules such as P-a strongly absorb (Aronoff, 1950), and to which biological tissues are relatively transparent. We used P-a because it is an early metabolite of chlorophyll, however, most known metabolites of chlorophyll can be synthesized from P-a by reactions that normally take place in animal cells. Control samples of mitochondria without P-a, and/or kept in the dark were also assayed. In the presence of P-a, mitochondria exposed to red light produce more ATP than mitochondria without P-a (Fig. 1A) or mitochondria kept in the dark (supplementary material Fig. S1A–D). Mitochondrial membrane potential (Fig. 1B) and oxygen consumption (Fig. 1C) increased upon increased light exposure in P-a-treated mitochondria. Light or P-a alone had no effect on any of the above measures of mitochondrial activity (supplementary material Fig. S1E–G). With too much added P-a, ATP concentrations and the rate of oxygen consumption started to return to the levels in mitochondria not incubated with P-a (supplementary material Fig. S1G). Addition of the electron transport inhibitor, sodium azide, reduced the light- and P-a-fueled oxygen consumption by 57% (supplementary material Fig. S1H–I), consistent with oxygen consumption occurring through the electron transport system. Observations were consistent with enhanced ATP production driven by oxidative phosphorylation.

Fig. 1.

Chlorophyll metabolite P-a allows isolated mouse liver mitochondria to capture light to make ATP. (A) ATP synthesis in mouse liver mitochondria incubated with P-a (treated) and exposed to light compared to controls (no P-a). Light exposure started at time zero and ADP was added at 30 seconds. Aliquots were obtained at times shown and relative ATP levels measured using the firefly luciferase assay. Means and standard deviations are shown for each time point. The experiment was run in triplicate with the same batch of mitochondria. *P<0.05 for treated versus control samples. (B) Mitochondrial membrane potential (Δψm) under different treatments as measured by safranin fluorescence. Lower fluorescence equals higher membrane potential. Mitochondria, with or without P-a, were exposed to light for 2 minutes or kept in the dark. Safranin was added at time zero and safranin fluorescence was continuously measured while samples remained under the light. The experiment was run in triplicate with the same batch of mitochondria. Curves shown are the average traces for triplicate runs. (C) Representative oxygraph trace (black line) for mitochondria treated with 4 µM P-a. The light was turned on or off at the times indicated by the arrows. Steeper slope denotes faster oxygen consumption. Dotted lines show slopes when the light was off. When the light was turned on the slope of the black line increased by twofold. That is, oxygen consumption increased when the light was turned on. When the light was turned off, oxygen consumption returned to baseline levels (i.e. the two gray lines have the same slope).

To determine whether P-a associates with mitochondria, we measured P-a fluorescence at 675 nm in the presence of increasing amounts of heart mitochondrial fragments obtained from sheep (Fig. 2A,B). After increasing the concentration of mitochondria, P-a fluorescence increased abruptly, by fivefold, and quickly reached a plateau (Fig. 2B). The abrupt change in fluorescence reflects a change in the environment of P-a, consistent with its change from an aqueous environment to one in which it is presumably associated with a protein. This threshold-sensitive behavior is consistent with zero-order ultrasensitivity, or positively cooperative binding, as described by Goldbeter and Koshland, and suggests a coordinated interaction between the metabolite and mitochondrial fragments (Goldbeter and Koshland, 1981). In contrast, this threshold sensitivity was not observed when increasing amounts of bovine serum albumin (BSA) were added to a solution of P-a; instead, fluorescence steadily increased (supplementary material Fig. S1J).

Fig. 2.

Cooperative binding of P-a to mitochondrial fragments. (A) Fluorescence spectra of P-a before and after addition of sheep heart mitochondrial fragments. Upon addition of mitochondrial fragments, the fluorescence intensity of P-a increased and shifted to a longer wavelength, and the shape of the curve (ratio of the shoulder to main peak) changed. (B) Ultrasensitive steady state response of the P-a–mitochondrial interaction. We measured fluorescence intensity for a 1 µM P-a solution while increasing the concentration of mitochondrial fragments. A Hill coefficient of 36, with a 95% confidence interval from 7 to 65, was obtained by fitting the data to the Hill equation [y = axb/(cb+xb)+offset]. Fit (R2): 0.96.

Catabolic reduction of coenzyme Q10 (CoQ10) is a rate limiting step in respiration (Crane, 2001). The majority of CoQ10 molecules exist in two alternate states of oxidation: ubiquinone, the oxidized form, and ubiquinol, the reduced form. To show that the P-a metabolite could catalyze the photoreduction of mitochondrial CoQ10, we measured the oxidation state of CoQ10 in the above sheep heart mitochondrial fragments in response to exposure to red light. We exposed the mitochondria to light for 10 minutes and measured the percentage of reduced and oxidized CoQ10 by high performance liquid chromatography (HPLC) (Qu et al., 2013). In the freshly isolated mitochondria fragments, nearly all the CoQ10 was oxidized in the form of ubiquinone. However, when we incubated the mitochondria with P-a and exposed the suspension to light, 46% of CoQ10 was reduced (Table 1, entry 1). In comparison, as a positive control, we energized the mitochondria with glutamate/malate and kept the suspension in the dark, yielding a 75% reduction of CoQ10 within 10 minutes (entry 2). In the absence of light, no reduction occurred (entry 3). Upon denaturing the mitochondrial proteins with heat, no reduction occurred (entry 4). Likewise, there was a lack of CoQ10 reduction with CoQ10, P-a and light in the absence of mitochondria (entry 5). These observations are consistent with the fluorescence data in Fig. 2A,B, showing that mitochondrial proteins sequester and organize P-a. In the absence of added P-a, a 2–14% reduction was observed, depending on the mitochondrial preparation used (entry 6). We attribute this ‘background reduction’ to the actions of endogenous chlorophyll metabolites, which we were able to detect by fluorescence spectroscopy (see Distribution of light-absorbing dietary chlorophyll, below).

Table 1. Photoreduction of CoQ10 is an early event in light-stimulated ATP synthesis

Light-driven ATP synthesis in rodent tissue homogenates

To determine whether chlorophyll metabolites and light could influence ATP production in whole tissues, we treated mouse brain homogenates with P-a and exposed them to 670-nm light. The treated brain homogenates synthesized ATP at a 35% faster rate than a control homogenate that was not incubated with P-a [relative ATP synthesis rates (means with standard error and 95% confidence intervals (CI) were: treated, 171.7±8.1 (CI: 154.6–188.7); control, 111.3±9.1 (CI: 92.5–130.0); Fig. 3A]. No linear correlation between the increase in ATP concentrations and the amount of added P-a was observed. Increasing concentrations of P-a elicited the same increase in ATP (supplementary material Fig. S2A,B).

Fig. 3.

Chlorophyll metabolite P-a allows mouse brain tissue homogenates to capture light to make ATP. (A) ATP synthesis in mouse brain homogenate with light exposure. Homogenates were incubated with ADP ± P-a and exposed to light starting at time zero. Aliquots were withdrawn at the times shown. Relative ATP in the aliquots was measured using the firefly luciferase assay. The experiment was run in triplicate with the same batch of homogenized brains. Means and standard errors are shown for each time point. For the control, the standard errors are smaller than the line markings and thus cannot be seen. *P<0.05 for treated versus untreated samples. (B) Overlay of the absorption spectrum of P-a (dotted line) and the wavelengths tested for ATP production in samples treated with P-a and exposed to light for 20 minutes. Peak ATP production correlated with peak P-a absorption. Experiments were done in triplicate. Means and standard errors were calculated, however, standard errors are smaller than the markings and thus cannot be seen.

To demonstrate that photon absorption by P-a was necessary to enhance ATP production, we exposed the P-a-treated brain homogenates to greenish (500 nm) and red (630, 670 and 690 nm) light, all with the same total energy. Wavelengths of light that were more strongly absorbed by P-a produced the largest increase in ATP. For example, the ATP concentration increased by ∼16-fold during exposure to 670 nm light; relative to the same sample kept in the dark, it increased by two-to-fivefold during exposure to 500, 630 and 690-nm light of equal energy (Fig. 3B).

In addition to brain homogenates, P-a also enhanced ATP production in adipose, lens and heart homogenates (supplementary material Fig. S2C–E). Quantification of ATP by both the luciferase assay and high-performance liquid chromatography (HPLC) gave similar results (supplementary material Fig. S2E–F).

Distribution of light-absorbing dietary chlorophyll

Chlorophylls and its metabolites, both chlorins, have signature absorption and admission spectra (Aronoff, 1950). Namely they absorb strongly (ε≈50,000 M−1 cm−1) at ∼665–670 nm and demonstrate intense fluorescence emissions at ∼675 nm, which differentiate chlorins from endogenous molecules in mammals (Aronoff, 1950). To examine whether dietary chlorophyll and/or its metabolites were present in animal tissue after oral consumption, we fed mice a chlorophyll-rich diet. Brain (Fig. 4A) and fat (Fig. 4C) extracts from these mice exhibited red fluorescence at 675 nm when excited with a 410-nm light [brain: treated, 15.4±6.7 (n = 6); control: 4.2±2.6 (n = 6; means ± s.d.); P<0.01]. The excitation spectrum of this 675-nm peak (Fig. 4B) was similar to that of known chlorophyll metabolites with an intact chlorin ring: with maxima at 408, 504, 535, 562 and 607 nm. This red fluorescence diminished, as measured by the area under the 675 nm peak, when animals were given a chlorophyll-free diet for 2 weeks. Red fluorescence could also be seen using fluorescence imaging; fluorescence was stronger in the bodies and brains of animals fed chlorophyll than in animals given a chlorophyll-poor diet [Fig. 4D; mean gray value in the boxed areas with standard deviation and minimum and maximum gray value shown in brackets were: treated brain, 118 (97–138); control brain, 82 (60–100); treated back fat pad, 116 (97–132) and control back fat pad, 35 (25–46)]. The red fluorescence was enriched in the gut and intestines, consistent with dietary chlorophyll being the source of the fluorescence.

Fig. 4.

Dietary chlorophyll results in chlorophyll-metabolite-like fluorescence in tissues. (A) Representative fluorescence spectra of brain extracts following excitation at 410 nm. Relative peak areas for a total of six control animals fed a chlorophyll-poor diet and six treated animals fed a chlorophyll-rich diet. (B) Representative excitation spectrum (emission at 675 nm) of a brain extract from mice fed a chlorophyll-rich diet. (C) Representative fluorescence spectra of abdominal fat extracts from mice fed chlorophyll-poor and rich diets. (D) A 675±10-nm fluorescence image of skinned mice raised on chlorophyll-rich and -poor diets.

To determine whether the red fluorescence was localized to mitochondria, we measured the relative 675-nm fluorescence in whole liver homogenates and mitochondria isolated from these homogenates. As measured by fluorescence intensity, isolated mitochondria contained 2.3-fold as much of the 675-nm fluorescent metabolite(s) per milligram of protein as did the whole liver homogenate. This observation suggests that P-a was concentrated in the mitochondria, consistent with data summarized in Fig. 2A,B, and literature reports (MacDonald et al., 1999; Tang et al., 2006).

Fat and plasma extracts from rats fed chlorophyll-rich diets were further analyzed by HPLC to elucidate the source of the red 675-nm fluorescence. Fig. 5A shows a representative chromatogram with compounds in the eluting solvent that displayed 675-nm fluorescence when excited with 410-nm light. Rat fat extracts and plasma extracts both contained similar chlorophyll-derived metabolites (similar chromatograms not illustrated). Two groups of compounds eluting at 23–30 minutes and 40–46 minutes were detected. Compounds eluting between 23 and 30 minutes had similar retention times to those of the chlorophyll metabolites without the phytyl tail, with at least one carboxylate group, such as P-a. The absorption spectra (the locations of the absorbance maxima and the Soret-to-Qy-band ratios) of this group of compounds were consistent with demetalated chlorophylls (Rabinowitch, 1944), as shown in Fig. 5B. In addition, the spectra of this group of peaks were indicative of coordination to a metal ion. A representative spectrum of such a presumably metalated metabolite is shown in Fig. 5C, showing a red shifted Soret band, a blue shifted Qy-band and a Soret-to-Qy-band ratio of ∼1. The compounds eluting between 40 and 46 minutes had similar retention times to that of the demetalated chlorophyll-a standard (pheophytin-a). In addition, these compounds partitioned with hexanes (polarity index = 0.1) when mixed with hexanes and acetonitrile (polarity index = 5.8). This latter characteristic is consistent with a lack of a carboxylic acid group, or an esterified P-a, such as pheophytin-a. Similar HPLC chromatograms from fat extracts of swine fed chlorophyll rich diets (Mihai et al., 2013) were recorded (supplementary material Fig. S2G), suggesting that uptake and distribution of chlorophyll metabolites were not unique to mice and rats.

Fig. 5.

Light-absorbing metabolites of chlorophyll are present in adipose tissue. (A) HPLC chromatogram of an adipose extract. 2.5 grams of abdominal adipose tissue from a rat fed a chlorophyll-rich diet was extracted with acetone and the acetone concentrate subjected to HPLC. In the chromatogram, only compounds that displayed 675-nm fluorescence, characteristic of chlorophyll and its metabolites possessing a chlorin ring, are shown. Five major peaks are observed along with several minor peaks. For peaks with letters, the corresponding absorption spectra are shown below. (B–D) Absorption spectra of labeled peaks in A (b–d, respectively). Numbers above peaks are peak maxima in nm. Numbers in the center are the ratios of the Soret band, around 400 nm, to the Qy band at around 655 nm. All spectra are consistent with those of metabolites of chlorophyll. Spectrum C has been assigned to a metalated porphyrin.

We quantified total blood pigments from rats that absorbed at 665 nm. Using an extinction coefficient of 52,000 at 665 nm (Lichtenthaler, 1987), which is typical of chlorophyll-a-derived pheophytins, we estimated a plasma concentration of 0.05 µM in two rats fed a chlorophyll-rich diet. The 665-nm peak was absent in animals fed a chlorophyll-poor diet. The amount of measured total metabolite was five- and two-times higher than that reported for the fat soluble vitamins K (Tovar et al., 2006) and D (Halloran and DeLuca, 1979), respectively, in the rat.

Light-driven ATP synthesis in C. elegans

Next, we used C. elegans to evaluate the effects of light-stimulated ATP production in a complex organism. As C. elegans age, there is a drop in cellular ATP (Braeckman et al., 1999; Braeckman et al., 2002). We hypothesized that the worm would live longer if it could offset this decline in ATP by harvesting light energy for ATP synthesis. As our model system, we used firefly luciferase-expressing C. elegans, which upon incubation with luciferin emit a luminescence that is proportional to their ATP pools (Lagido et al., 2009; Lagido et al., 2008; Lagido et al., 2001). Upon incubation with P-a, worms incorporated the metabolite, as measured by fluorescence spectroscopy (supplementary material Fig. S3A). To determine whether there were changes in ATP stores in response to light, we plated two groups of worms into 96-well plates containing luciferin substrate. We measured worm luminescence at time zero. We then exposed one group to 660-nm light and kept the other in the dark and periodically measured luminescence in both groups of worms (summarized in Fig. 6A,B). To determine whether ATP increased in light-exposed animals, we subtracted the luminescence signal of the worms kept in the dark from that of the worms exposed to light (Fig. 6C). Worms that were given P-a had a statistically significant increase in ATP when exposed to light, whereas control worms showed no increase. The metabolite alone had no effect on ATP levels when the worms were kept in the dark (i.e. luminescence intensity remained constant throughout the experiment). The elevated luminescence signal persisted for 1 hour after the light was turned off, at which time measurement ceased. However, the luminescence intensity did not further increase during the time the light was off. It was unclear whether this persistent signal reflected the kinetics of the luciferase–luciferin reaction, luciferase expression, or actual ATP pools. Thus ATP was quantified by additional methods.

Fig. 6.

P-a treatment enables worms to capture light to generate ATP. Black lines show results from worms incubated with P-a at the indicated concentrations; gray lines show results from worms not incubated with P-a. (A) In vivo, real-time ATP levels in 1-day-old worms were tracked during exposure to light. Luciferase-expressing worms were incubated with luciferin and exposed to light at time zero. Luminescence was measured at the times shown. Data represent triplicate experiments of 12 separate sets of worms plated in 12 wells of a 96-well pate. Means and standard deviations are shown for each of the three separate runs. (B) In vivo, real-time ATP levels in worms kept in the dark. The same experiment as in A in the same 96-well plate, but the worms were kept in the dark. (C) Percentage ATP increase for worms in A relative to worms in B. (D) In vivo, real-time ATP monitoring. Groups of worms were incubated with or without P-a; light exposure began at time zero and in vivo ATP levels were determined at the times shown in each group of worms by measuring worm luminescence after the addition of luciferin. Each time point represents a different group of worms exposed to light for the times shown. Each experiment was performed in triplicate sets of 12; averages and standard deviations are shown. P-values of Student’s t-tests are also shown, representing the significance compared with the controls at the same light exposure. (E) The same experiment as described in D, but using 10-day-old worms.

As an alternative means of determining whether light stimulated ATP synthesis, we plated luciferase-expressing worms into a 96-well plate without the luciferin substrate, and exposed them to light. ATP status was determined at time zero, immediately before light exposure, and at 15-minute intervals for a total of 45 minutes by adding the luciferin substrate to a group of worms and measuring luminescence (Fig. 6D,E). We found an increase in ATP when 5-day-old and 10-day-old adult worms were fed the metabolite and exposed to light.

We further confirmed the in vivo increase in ATP using two additional ex vivo methods. After light treatment, we lysed the worms, extracted their ATP and quantified ATP in the homogenate using either the firefly luciferase assay or HPLC (supplementary material Fig. S3B,C). Both methods were consistent with the in vivo ATP measurements.

In addition to an increase in ATP, worms treated with P-a exhibited a 13% increase in respiration when exposed to light, as measured by oxygen consumption. However, light had no effect on the respiration rates in untreated worms (supplementary material Fig. S3D). This observation is consistent with an increase in ATP through oxidative phosphorylation, in accordance with the mitochondrial data. Despite the increase in ATP, the levels of reactive oxygen species (ROS) were equivalent in treated and untreated worms during 5 hous of light exposure, as measured using 2′,7′-dichlorofluorescin diacetate (supplementary material Fig. S3E). In fact, although the difference was not statistically significant, treated worms exhibited, on average, lower levels of ROS.

Light harvesting to extend life span

We next tested whether photonic energy absorption by P-a could prolong life. Life span measurements were taken in liquid cultures according to the method of Gandhi et al. and Mitchell et al. (Gandhi et al., 1980; Mitchell et al., 1979). Adult worms were incubated with P-a for 24 hours. Beginning at day 5 of adulthood, we exposed the worms to red light in a daily 5 hours:19 hours light∶dark cycle. Control worms were not given P-a or exposed to light, but otherwise were kept under identical conditions. Counts were made at 2- to 3-day intervals and deaths were assumed to have occurred at the midpoint of the interval. To obtain the half-life, we plotted the fraction alive at each count verses time and fitted the data to a two-parameter logistic function, known to accurately fit survival of 95% of the population (Vanfleteren et al., 1998). The group treated with P-a and light had a 17% longer median life span than the group that was not treated with P-a, but exposed to light (Fig. 7A,B). P-a treatment alone, in the absence of light, had no effect on life span (supplementary material Fig. S4B). Light treatment alone decreased life span by 10% (supplementary material Fig. S4B), in accordance with reports that nematodes survive better in complete darkness (Thomas, 1965). This decrease in median life span brought on by light was reversed when the worms were treated with P-a. The increased median life span with light and P-a was reproducible with different batches of worms (supplementary material Fig. S4B–E). Increasing the amount of P-a past a certain threshold, however, lead to a gradual decrease in lifespan approaching that of animals not treated with P-a (supplementary material Fig. S4B,C).

Fig. 7.

P-a and light increase C. elegans median life span. (A) Median life spans of worms treated with P-a and exposed to light versus those exposed to light but not treated with P-a. Numbers in parentheses are 95% confidence intervals (CI). (B) Life span plots of the values used for A. P-value is from an f-test. Experiments were run in triplicate. The L4 molt was used as time zero for life span analysis. Worms were grown in liquid culture at 500 worms/ml. For counting, aliquots were withdrawn and placed in a 96-well plate to give ∼10 worms per well; the worms were scored dead or alive on the basis of their movement, determined with the aid of a light microscope. A total of 60–100 worms, representing 1–2% of the total population, were withdrawn and counted at each time point for each flask.

We also examined life span longitudinally. We placed 6-day-old adult P-a- and non-P-a-treated worms into a 96-well plate, exposed them to red light for 5 hours per day and compared the percentage dead and alive after 15 days. Result: 47% of the P-a-treated worms were alive (175 alive; 200 dead) after 15 days, versus 41% of the control worms (111 alive; 163 dead), consistent with the cross-sectional experiments above.

DISCUSSION

Photoreduction of coenzyme Q

Upon incubation of: (1) isolated mouse mitochondria; (2) mouse brain, heart and lens homogenates; (3) homogenized duck fat; and (4) live C. elegans, with a representative metabolite of chlorophyll, light exposure was able to increased ATP concentrations. These observations in a variety of animal tissues perhaps demonstrate the generality of this phenomenon. To synthesize ATP, mitochondrial NADH reductase (complex I) and succinate reductase (complex II) extract electrons from NADH and succinate, respectively. These electrons are used to reduce mitochondrial CoQ10, resulting in ubiquinol (the reduced form of CoQ10). Ubiquinol shuttles the electrons to cytochrome c reductase (complex III), which uses the electrons to reduce cytochrome c, which shuttles the electrons to cytochrome c oxidase (complex IV), which ultimately donates the electrons to molecular oxygen. As a result of this electron flow, protons are pumped from the mitochondrial matrix into the inner membrane space, generating a trans-membrane potential used to drive the enzyme ATP-synthase.

The ‘pool equation’ of Kröger and Klingenberg describes the total rate of electron transfer: Vobs = VoxVred/(Vox+Vred), where Vred is ubiquinone reduction and Vox is ubiquinol oxidation (Kröger and Klingenberg, 1973). Based on this equation, the major roles of complexes I and II can be considered to maintain the mitochondrial ubiquinol pool, and to reduce ubiquinone, which should result in increased ATP synthesis. We reasoned the reduction of CoQ10 could be a potential step in the respiratory pathway in which chlorophyll metabolites could influence ATP levels, as it is known that chlorophyll-type molecules can photoreduce quinones (Chesnokov et al., 2002; Okayama et al., 1967). Indeed, a primary step during photosynthesis is the reduction of the quinone, plastoquinone, by a photochemically excited chlorophyll a (Witt et al., 1963). We hypothesized that if the reduction of mitochondrial ubiquinone could be catalyzed by a photoactivated chlorophyll metabolite, such as P-a, then ATP synthesis would be driven by light in mitochondria with these dietary metabolites. In the proposed mechanism, electrons would be transferred by a metabolite of chlorophyll to CoQ10, from a chemical oxidant present in the mitochondrial milieu. Many molecules, such as dienols, sulfhydryl compounds, ferrous compounds, NADH, NADPH and ascorbic acid, could all potentially act as electron donors. Throughout mammalian evolution, photons of red light from sunlight have been present deep inside almost every tissue in the body. Photosensitized electron transfer from excited chlorophyll-type molecules is widely hypothesized to be a primitive form of light-to-energy conversion that evolved into photosynthesis (Krasnovsky, 1976). Thus it is tempting to speculate that mammals possess conserved mechanisms to harness photonic energy.

Photoexcitation of chlorophyll and derivatives produces the excited singlet state (*1). Oxidative quenching of this singlet state by ubiquinone is possible. Electron transfer could take place through proteins or in solution. Escape from the charge transfer complex and protonation would yield ubisemiquinone, which accounts for 2–3% of the total ubiquinone content of mitochondria (De Jong and Albracht, 1994). Ubisemiquinone can be reduced to ubiquinol by repeating the above sequence or by disproportionation to give one molecule of ubiquinol and one molecule of ubiquinone. Back-electron transfer, from the photoreduced metabolite to the oxidized quinone, could be inhibited by disproportionation or by organizing the chlorophyll derivative and ubiquinol through protein binding. In line with the CoQ10 photoreduction hypothesis, we observed mitochondrial CoQ10 was reduced when isolated mitochondria were exposed to light and P-a (Table 1). Also consistent with light and/or P-a acting upstream of complexes I and II, in isolated mitochondria we observed an increase in ATP in the absence of added electron transport substrates, such as glutamate and malate (Fig. 1A; supplementary material Fig. S1A–C). However, further evidence is needed to confirm this mechanistic hypothesis.

The effect of light in vivo

Intense red light between 600 and 700 nm has been reported to modulate biological processes (Hashmi et al., 2010; Passarella et al., 1984; Wong-Riley et al., 2005), and has been investigated as a clinical intervention to treat a variety of conditions (Hashmi et al., 2010). Exposure to red light is thought to stimulate cellular energy metabolism and/or energy production by, as yet, poorly defined mechanisms (Hashmi et al., 2010). In the presence of P-a, we observed changes in energetics in animal-derived tissues initiated with light of intensity and wavelengths (≈670 nm at ≈0.8±0.2 W/m2) that can be found in vivo when outdoors on a clear day. On a clear day the amount of light illuminating your brain would allow you to comfortably read a printed book (Benaron et al., 1997). In humans, the temporal bone of the skull and the scalp attenuate only 50% of light at a wavelength of ∼670 nm (Eichler et al., 1977; Wan et al., 1981). In small animals, light can readily reach the entire brain under normal illumination (Berry and Harman, 1956; Massopust and Daigle, 1961; Menaker et al., 1970; Vanbrunt et al., 1964). Sun or room light over the range of 600–700 nm can penetrate an approximately 4-cm-thick abdominal wall with only three-to-five orders of magnitude attenuation (Bearden et al., 2001; Wan et al., 1981). Photons between 630 and 800 nm can penetrate 25 cm through tissue and muscle of the calf (Chance et al., 1988). Adipose tissue is bathed in wavelengths of light that would excite chlorophyll metabolites (Bachem and Reed, 1931; Barun et al., 2007; Zourabian et al., 2000). Thus, identification of pathways, which might have developed to take advantage of this photonic energy, may have far-reaching implications.

Dietary chlorophyll in animals

A potential pathway for photonic energy capture is absorption by dietary-derived plant pigments. Little is known about the pharmacokinetics and pharmacodynamics of dietary chlorophyll or its chlorin-type metabolites in human tissues. Here, we observed the accumulation of chlorin-type molecules in mice, rats and swine administered a diet rich in plant chlorophylls (Figs 4, 5; supplementary material Fig. S2G). Data suggests that sequestration from the diets of chlorophyll-derived molecules, which are capable of absorbing ambient photonic energy, might be a general phenomenon.

To date, the reported chlorophyll metabolites isolated from animals have been demetalated (Egner et al., 2000; Fernandes et al., 2007; Scheie and Flaoyen, 2003). The acidic environment of the stomach is thought to bring about loss of magnesium from the chlorophyll (Ferruzzi and Blakeslee, 2007; Ma and Dolphin, 1999). Our absorbance data from extracted pigments from rat fat is consistent with the presence of chlorophyll metabolites bonded to a metal (Fig. 5). If true, the presence of a metal derivative in fat tissue suggests that the pigment was actively re-metalated to take part in coordination chemistry. The identification of several metabolites in the fat and plasma of rats and swine fed a chlorophyll-rich diet that are similar to ones found in plants is significant. However, the structures of the metabolites remain to be elucidated. Chlorin-type molecules are similar in structure and photophysical properties and thus can carry out similar photochemistry (Gradyushko et al., 1970). Our data demonstrate that dietary metabolites of chlorophyll can be distributed throughout the body where photon absorption may lead to an increase in ATP as demonstrated for the chlorin P-a. Indeed, P-a could have been transformed into other metabolites, as most known metabolites of chlorophyll can be formed from P-a by reactions that normally take place in animal cells.

There relationship between the increase in ATP and the amount of added P-a was not linear (supplementary material Fig. S2A,B). ATP stimulation by light in the presence of P-a better fitted a binary on/off, rather than a graded response to P-a. Increasing concentrations of P-a elicited the same increase in ATP, after light exposure. However, with too much added P-a, ATP levels began to fall. This on/off response was also consistent with the observed cooperative binding mode of P-a with mitochondria fragments, suggesting that the threshold response may be regulated by mitochondrial binding of P-a. If chlorophyll metabolites are found to be involved in energy homeostasis, a better understanding of their pharmacodynamics and pharmacokinetics will be needed.

ATP stores and life span

Light of 670 nm wavelength that penetrates the human body, yields ∼43 kcal/mol (1.18×10−22 kcal/photon). Given estimated concentrations of chlorophyll derivatives in the body (Egner et al., 2000; Fernandes et al., 2007; Scheie and Flaoyen, 2003) and the photon flux at 670 nm (Bachem and Reed, 1931; Barun et al., 2007; Bearden et al., 2001; Benaron et al., 1997; Chance et al., 1988; Eichler et al., 1977; Menaker et al., 1970; Vanbrunt et al., 1964; Wan et al., 1981; Zourabian et al., 2000), each chlorophyll metabolite would be expected to absorb only a few photons per second. As such, one might anticipate negligible amounts of additional energy. Organization of chlorophyll metabolites into supramolecular structures, similar to chlorophyll antenna systems in photosynthetic organisms, would increase the effective cross-sectional area of photon absorption and, thus, photon catch. Indeed, our observed positively cooperative binding with mitochondrial fragments is evidence for such organization. Even so, to approach the rate of ATP synthesis powered by NADH or FADH2, sufficient P-a pigment would have to be added to turn animals green. Nevertheless, in model systems, we measure an increase in ATP upon light absorption and changes in fundamental biology (extention in life span). Regardless of the mechanism by which ATP is increased or the measured amount of the increase, perhaps the larger question is: how much of an increase in ATP is enough to make a biological difference?

In animals, treatment with P-a and light both increased ATP and median life span, suggesting that light in the presence of these light absorbing dietary metabolites can significantly affect fundamental biological processes. We previously observed that chlorophyll metabolites enabled photonic energy capture to enhance vision using a mouse model (Isayama et al., 2006; Washington et al., 2004; Washington et al., 2007). Because ATP can regulate a broad range of biological processes, we suspect that ATP modulation also played a role in vision enhancement. The increase in life span may seem contradictory, given that there are studies suggesting that limiting metabolism and ATP synthesis increases the life span of C. elegans. It has been proposed that the life span of this worm might be determined by the metabolic status during development (Dillin et al., 2002) and that there might be a coupling of a slow early metabolism and longevity (Lee et al., 2003). Other observations have led to the hypothesis that increased life span may be achieved by decreasing total energy expenditure across the worm’s entire life span (Van Raamsdonk et al., 2010). However, most studies decrease ATP synthesis from hatching through genetic engineering. By contrast, here, we were able to increase ATP during adulthood at a time when ATP stores reportedly begin to decline. For example, by day 4 of adulthood, the level of ATP and oxygen consumption can drop by as much as 50% compared to day zero (Braeckman et al., 1999; Braeckman et al., 2002). This difference in timing might account for why we observed an increase in life span in response to an increase in ATP. We note that besides caloric restriction, there are only a few interventions that are known (Petrascheck et al., 2007) to increase life span when given to an adult animal.

Alternative mechanisms of life-span extension cannot be ruled out. For example, an increase in reactive oxygen species (ROS) is thought to increase life span in C. elegans (Heidler et al., 2010; Schulz et al., 2007). Upon photon absorption, metabolites of chlorophyll can transfer energy to oxygen, resulting in the generation of singlet oxygen, a ROS. Thus life-span extension seen here might be a result of an increase in ROS due to the generation of singlet oxygen. However, our published data with blood plasma (Qu et al., 2013) and data here from C. elegans do not show an increase in ROS. As ubiquinol is a potent lipid antioxidant (Frei et al., 1990) any ROS increase might be offset by an increase in ubiquinol, generated from the photoreduction of coenzyme Q. Indeed, by producing ubiquinol, P-a might have increased life span by an alternative method by protecting against long-term oxidative damage, which is also a mechanism that has been shown to increase C. elegans life span (Ishii et al., 2004). Further research will be needed to distinguish between the above possible mechanisms.

Conclusion

Both increased sun exposure (Dhar and Lambert, 2013; John et al., 2004; Kent et al., 2013a; Kent et al., 2013b; Levandovski et al., 2013) and the consumption of green vegetables (Block et al., 1992; Ferruzzi and Blakeslee, 2007; van’t Veer et al., 2000) are correlated with better overall health outcomes in a variety of diseases of aging. These benefits are commonly attributed to an increase in vitamin D from sunlight exposure and consumption of antioxidants from green vegetables. Our work suggests these explanations might be incomplete. Sunlight is the most abundant energy source on this planet. Throughout mammalian evolution, the internal organs of most animals, including humans, have been bathed in photonic energy from the sun. Do animals have metabolic pathways that enable them to take greater advantage of this abundant energy source? The demonstration that: (1) light-sensitive chlorophyll-type molecules are sequestered into animal tissues; (2) in the presence of the chlorophyll metabolite P-a, there is an increase in ATP in isolated animal mitochondria, tissue homogenates and in C. elegans, upon exposure to light of wavelengths absorbed by P-a; and (3) in the presence of P-a, light alters fundamental biology resulting in up to a 17% extension of life span in C. elegans suggests that, similarly to plants and photosynthetic organisms, animals also possess metabolic pathways to derive energy directly from sunlight. Additional studies should confirm these conclusions.

MATERIALS AND METHODS

General procedures

Two light sources were used for all experiments, either a 300 W halogen lamp equipped with a variable transformer and band pass interference filters [500, 632, 670, 690 nm with full-width half maximum (FWHM) of 10 nm] or a 1.70 W, 660 nm, LED light bulb. Luminous power density was set to 0.8±0.2 W/m2 as measured by a LI-250A light meter (LI-COR Biosciences, Lincoln, NE). The intensity of red light used was 30–60 times less than the level of red light that we measured on a clear March afternoon in New York City and is less than the level that several organs are exposed to in vivo. Pyropheophorbide-a (P-a, 95% purity) was obtained from Frontier Scientific, Logan, UT. For all experiments, prior to exposing samples to light, we minimized light exposure by preparing samples/experiments with laboratory lights turned off, using a minimum amount of indirect sunlight that shone through laboratory windows (>0.001 W/m2).

Animal protocols were approved by the Institutional Animal Care and Use Committee of Columbia University. Mice (ICR, Charles River, Wilmington, MA) weighing 22–28 g and rats (Fisher 344, Harlan Teklad, Indianapolis, IN), weighing 300 g were used. Swine, fed a chlorophyll-rich diet have been described previously (Mihai et al., 2013).

Continuous ATP monitoring in isolated mouse liver mitochondria

Mice were fed a chlorophyll-poor, purified rodent diet supplied by Harlan (Indianapolis, IN) for a minimum of 2 weeks. We isolated mouse liver mitochondria by differential centrifugation according to existing procedures (Frezza et al., 2007) and used only preparations with a minimum respiratory control ratio above 4.0 [state III/II, using glutamate (5 mM final) and malate (2.5 mM final) as measured with an oxygen electrode from Qubit Systems Inc., Kingston, ON, Canada]. Mitochondria at a final concentration of ≈1 mg protein/ml as determined by the Coomassie Plus (Bradford) protein assay (Thermo Fisher Scientific, Rockford, IL) in buffer A (0.250 M mannitol, 0.02 M HEPES, 0.01 M KCl, 0.003 M KH2PO4, 0.0015 M MgAc2·H2O, 0.001 M EGTA, 1 mg/ml fatty acid–poor BSA, pH 7.4) were incubated with P-a for 30 minutes at 0°C. ADP was added (0.5 mM final concentration) and then 250 µl aliquots of this suspension were placed in nine wells of a 96-well plate for exposure to light at room temperature. At various times, 20 µl aliquots were withdrawn, added to 150 µl lysis buffer (10 mM Tris, pH 7.5; 100 mM NaCl; 1 mM EDTA and 1% Triton X-100), and ATP levels were determined with a commercial kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. Controls were treated in the same way, except they were: (1) incubated at 0°C without P-a (shown), (2) not exposed to light and (3) were incubated without P-a and not exposed to light.

Membrane potential measurement

Mitochondrial membrane potential was monitored in buffer A as described by Feldkamp et al. (Feldkamp et al., 2005). Measurements were made in a 3 ml cuvette placed inside a fluorescence spectrometer (Fluorormax-4, HORIBA Jobin Yvon, Horiba Scientific, Kyoto, Japan) with a final reaction volume of 1 ml. For light exposure, we used a fiber optic light guide to capture and direct light from a 660 nm LED light bulb into the spectrometer. The end of the fiber optic cable was positioned 1 cm above the reaction mixture. Prior to these experiments, light power was measured 1 cm from the end of the fiber optic cable.

Oxygen consumption measurement

Mitochondrial oxygen consumption was measured using an oxygen electrode cuvette (OX1LP-1 ml; Qubit Systems Inc., Kingston, ON, Canada) according to the manufacturer’s instructions. Reactions were run with mitochondria at a concentration of ≈1 mg protein/m’ in buffer A. For light exposure, a 660-nm LED was directed at the plastic [poly-(methyl methacrylate)] chamber.

For inhibition of respiration, sodium azide was added at a final concentration of 0.005 M from a stock solution in water. Sodium azide inhibits cytochrome oxidase (complex IV): oxygen consumption during state 3 respiration is progressively inhibited by increasing concentrations of azide (Bogucka and Wojtczak, 1966).

Analysis of zero-order ultrasensitivity

Mitochondria from sheep hearts were prepared as previously described (Smith, 1967) on two separate occasions from 2 and 1 sheep heart(s) using ‘Procedure 1’. We used mitochondrial fragments to allow P-a direct access to the respiratory chain, to minimize potential complications due to variable rates of P-a import. Mitochondrial isolation started within 1 hour of the death of the animal and the hearts were transported to the laboratory in a bath of 0.25 M sucrose, 0.1 M tris(hydroxymethyl)aminomethane (Tris) at pH 7.5, which was surrounded by ice. Mitochondria were isolated and stored in 250 µl aliquots at a concentration of ∼60 mg of protein/ml in 300 mM trehalose, 10 mM HEPES–KOH pH 7.7, 10 mM KCl, 1 mM EGTA, 1 mM EDTA and 0.1% BSA at −80°C (Yamaguchi et al., 2007) until use. The thawed mitochondria exhibited a respiratory control ratio of ∼1, indicating mitochondrial fragmentation.

Analysis of coenzyme Q redox status

We used sheep heart mitochondria because they contain relatively large amounts of CoQ10, which expedited analysis. For evaluation of CoQ10 redox ratios, frozen mitochondria were thawed at 37°C and diluted with 500 µl buffer A to create a mitochondrial stock solution, which was kept on ice until use. For reactions, 50 µl of this stock suspension was added to 500 µl of buffer A, containing 0.5 µg/ml antimycin A from a 25 µg/ml stock solution in ethanol. Antimycin A binds to the Qi site of cytochrome c reductase (complex III), thereby inhibiting the upstream oxidation of any produced ubiquinol. Pa was added (25 µM final concentration) from a 1.3 mg/ml stock solution in DMSO. The suspension was added to a test tube, mixtures purged with argon and the reactions initiated by placing the tube between two LED light bulbs (previously described). We irradiated the samples for 10 minutes at room temperature. For negative controls, we repeated the above sequence changing the following: (1) in the absence of light; (2) in the absence of added P-a; (3) with heat denatured mitochondria; and (4) in the absence of added mitochondria but with added coenzyme Q. For a positive control we added 10 µl of a stock solution of 0.25 M glutamate/0.125 M malate in Tris buffer at pH 7. For mitochondrial denaturing, 200 µl of stock mitochondrial suspension was purged with argon and placed in a bath at 70°C for 5 minutes. For control reactions without added mitochondria, a coenzyme Q stock solution in buffer A was prepared by adding ALL-QTM (DSM Nutritinal products, Switzerland), a water-soluble coenzyme Q solution containing 10% coenzyme Q, modified food starch, sucrose and medium chain triglycerides, to buffer A. For these reactions 50 µl of the water-soluble Coenzyme Q stock or the denatured suspension was used as above in place of the mitochondrial stock solution. All reactions were adjusted to give the same amount of coenzyme Q in the reaction mixture as measured by HPLC.

To quantify relative ubiquinone and ubiquinol concentrations, a 50 µl aliquot was taken from the reaction mixture and was added to 200 µl of 0.4 M perchloric acid and 100 µl isopropyl ether containing 1 mg of butylated hydroxytoluene/ml as an antioxidant. The solution was vortexed for 1 minute, centrifuged for 2 minutes at 15,000 r.p.m. and the organic phase analyzed by HPLC. HPLC conditions have been reported previously (Qu et al., 2009; Qu et al., 2011). Briefly, we used an isocratic elutent consisting of 1% sodium acetate 3% glacial acetic acid, 5% butanol in methanol at 0.6 ml/minute. The HPLC column was 50×2.1 mm, C-18, 2.6 u, 100 Å (Phenomenex, Torrance, CA). A PDA detector set at 290 nm for ubiquinol and 275 nm for ubiquinone was used. We determined relative ubiquinol and ubiquinone concentrations by their online absorption spectra using extinction coefficients of 14,200 M−1 cm−1 at 275 nm in ethanol for ubiquinone and 4640 M−1 cm–1 at 290 nm in ethanol for ubiquinol (Lester et al., 1959).

Analysis of ATP synthesis in mouse brain homogenates

To produce homogenates of mouse brain, the frontal lobe was homogenized using two strokes of a Potter S homogenizer (Sartorius AG, Goettingen, Germany) at 4°C (20 mg of brain to 1 ml buffer A). The homogenate (80 µl) was added to buffer A (920 µl) and treated as described above for liver samples. Reactions were run in triplicate and data obtained between 5 and 50 minutes after lysis. ATP production showed a linear increase during this time, which was fitted to a line, the slope of which is reported as the relative ATP synthesis rate.

Analysis of ATP synthesis in mouse lens and heart homogenates

Lenses from mice were homogenized (KONTES® DUALL® tissue grinder with glass pestle) in ATP assay buffer (0.15 mM sucrose, 0.5 mM EDTA, 5 mM magnesium chloride, 7.5 mM sodium phosphate, 2 mM HEPES) at 50 µl buffer per lens. We added 1 µl of P-a stock (1 mM) and 1 µl of ADP stock (10 mM) to 100 µl lens homogenate. The mixture was exposed to red light (671 nm at 0.8 W/m2) or kept in dark for 20 minutes. ATP concentrations were determined using a luciferase-based ATP quantification kit according to the manufacture’s instructions (Life Technologies, Grand Island, NY).

Heart tissue (20 mg) was homogenized as above in 1 ml ATP assay buffer. 10 µl of P-a (1 mM) and 10 µl of ADP (10 mM) and 940 µl of ATP assay buffer were added into 40 µl tissue homogenate. The mixture was exposed to red light and ATP was determined as described above using a luciferase based ATP kit.

Analysis of ATP concentrations in duck adipose

We removed visceral fat from a duck (Anas platyrhynchos domestica) less then 30 minutes after death by decapitation and homogenized the fat at 4°C (without buffer) in a loose-fitting Potter-Elvehjem homogenizer. We then added P-a (70 µl of a 3.3 mg/ml stock solution) and ADP (800 µl of a 10 mg/ml stock solution). The homogenate was divided into two groups: one group was kept in the dark, while the other was exposed to red light (671 nm at 0.8 W/m2); both dishes were kept at 37°C. 200-µl aliquots were taken from each dish and ATP was measured using the luciferase assay or by HPLC, as described in the literature (Ally and Park, 1992).

Analysis of the effect of light wavelength

The entire brain of a mouse was homogenized with a Dounce homogenizer (20 mg of brain to 1 ml buffer C: 0.15 mM sucrose, 0.5 mM EDTA, 5 mM MgCl2, 7.5 mM Na2HPO4, 2 mM HEPES) at 4°C. We took a 40-µl aliquot of the homogenate and added it to 940 µl buffer C. We added 10 µl P-a (from a 1 mM stock in DMSO) and placed the sample on ice for 1 hour. We then added 10 µl ADP (from a 10 mM stock). Five 100-µl portions of the suspension were added to each well of a 96-well plate and exposed to light for 40 minutes. Then, 20-µl aliquots of the mixture were lysed with 200-µl lysis buffer for 1 hour on ice, and ATP levels were determined as above using a luciferase-based ATP kit.

Analysis of red fluorescence in tissue extracts

The chlorophyll-rich diet (Harlan Teklad, Indianapolis, IN) contained 15% by weight spirulina [a food supplement produced from cyanobacteria (Ciferri, 1983)], which is equivalent to ∼0.15% by weight chlorophyll-a. The control diet was a purified diet devoid of dietary chlorophylls (Harlan Teklad). The swine chlorophyll-rich diet has been described previously (Mihai et al., 2013).

For fluorescence spectroscopy, five pigs each were given these respective diets ad libitum for 2 weeks. Whole brain or 2–7 grams of abdominal fat was homogenized with a hand-held homogenizer (Omni Micro Homogenizer (μH), Omni International, Kennesaw, GA), HPLC grade acetone (40 ml) was added and the sample was vortexed for 1 minute. Insoluble material was precipitated by centrifugation and the acetone evaporated with a rotary evaporator. The samples were resuspended in 3 ml chloroform and measured directly.

For HPLC and UV spectroscopy, we extracted 2.5 grams of fat, as described above, from rats or swine that had been given a chlorophyll-rich diet, to give a clear oil. We then added 10 ml of absolute ethanol, cooled the sample to −20°C for 30 minutes, pelleted the insoluble material by centrifugation, separated and evaporated the ethanol with a rotary evaporator and re-suspended the sample in 500 µl of absolute ethanol. For plasma, we added 4 ml of plasma to 1 ml of saturated NaCl and 10 ml ethyl acetate, vortexed the sample for 1 minute and separated the layers by centrifugation. We removed the ethyl acetate layer, evaporated the ethyl acetate and re-suspended the resulting film in 300 µl of absolute ethanol. The samples were then used for HPLC and UV spectroscopy. A Waters (Milford, MA) HPLC system with a 600 pump, a 2475 fluorescent detector, a 2998 photodiode array (PDA) detector and a C18, 2.6 u, 100 Å, 150×2.10 mm column (Phenomenex, Torrance, CA) was used for HPLC. Excitation was set to 410 nm and emission set to 675 nm. Absorbance between 275 and 700 was recorded. We used a mobile phase of acetonitrile containing 10% isopropyl alcohol and 0.1% formic acid (solvent A) and water containing 0.1% formic acid (solvent B). Compounds were eluted at a flow rate of 0.3 ml/minute with a 50∶50 mixture of A∶B for 5 minutes, which was changed linearly to 100∶0, A∶B over 15 minutes. At 35 minutes, the flow was increased to 0.5 ml/minute.

In vivo imaging

Animals were imaged with a Maestro™ In-Vivo Imaging System (CRi, Hopkinton, MA), as described by Bouchard et al.; the animals were skinned to reduce interference from skin autofluoresence (Bouchard et al., 2007).

General C. elegans maintenance

Worms were a gift from Dr Cristina Lagido (Department of Molecular and Cell Biology, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, UK) (Lagido et al., 2009; Lagido et al., 2001). Nematode husbandry has been described previously (Wood, 1988). Briefly, animals were maintained on nematode growth medium (NGM) agar (Nunc) using E. coli strain OP50 as a food source. To obtain synchronous populations, we expanded a mixed population on egg yolk plates (Krause, 1995). Worm eggs were isolated from the population by treatment with 1% NaOCl/0.5 M NaOH solution (Emmons et al., 1979) and transferred to a liquid culture with E. coli strain OP50, carbenicillin (50 µg/ml) and amphotericin B (0.1 µg/ml; complete medium).

Real-time ATP monitoring in C. elegans

We administered the P-a chlorophyll metabolite by adding it to the culture medium for a minimum of 24 hours. To confirm P-a uptake, we washed away the culture medium containing P-a, suspended the worms in fresh medium and determined the fluorescence spectra in the worms. Treated worms had signature chlorophyll-derived fluorescence, whereas control worms that were not given P-a exhibited no such fluorescence, confirming metabolite uptake.

Method A

Worms were grown in liquid culture at a density of 10,000 worms/ml. Twenty-four hours before the experiment, the culture was split into control and treatment groups and varying amounts of a P-a stock solution in DMSO were added to the treated groups. Control worms were given DMSO vehicle. Worms were washed with M9 buffer (IPM Scientific, Eldersburg, MD) to remove food and unabsorbed P-a and resuspended at 3000 worms/ml. 50 µl of worm suspension from each of these groups were plated into a well of a 96-well plate. Each experimental group was plated into a minimum of 12 wells. To assay ATP stores by luminescence, 100 µl of luminescence buffer containing D-luciferin was added to each well, according to the literature (Lagido et al., 2009; Lagido et al., 2001) and luminescence was recorded in a plate reader. The luminescence buffer was a citric phosphate buffer at pH 6.5, 1% DMSO, 0.05% Triton X-100 and D-luciferin (100 µM). After initial ATP measurements, half of the worms from each experimental group were exposed to LED light centered at 660 nm at 1±2 W/m2; the other half was kept in the dark by covering the plate with aluminium foil. ATP (luminescence signal) was recorded periodically. The amount of ATP synthesized was reported as the difference within an experimental group between the luminescence signal of worms kept in the dark and the worms exposed to light. All experimental procedures outside of red light exposure were performed under dim light. The experiment was repeated three times with different populations of worms.

Method B

Worms were plated as above, with each experimental group divided into 12 wells of a 96-well plate. Four identical 96-well plates were made, each containing worms treated with varying concentrations of P-a and control worms. At time zero, 100 µl of luminescence buffer was added to a plate and in vivo ATP was assayed as luminescence. The remaining three plates were exposed to light and ATP assays were performed every 15 minutes for 45 minutes by the addition of 100 µl of luminescence buffer and the recording of luminescence.

In vitro ATP monitoring in C. elegans

One-day-old adult worms in liquid culture were incubated with P-a for 24 hours, washed with M9 buffer and re-suspended in M9 buffer at 50,000 worms/ml. The control group was incubated in DMSO vehicle without P-a. 100 µl of each worm suspension was placed into 18 centrifuge tubes. At time zero, six tubes from each group were placed in liquid nitrogen and the remaining tubes exposed to red light. Then, at 15 and 30 minutes, six tubes from each group were placed into liquid nitrogen. To measure ATP, we removed the centrifuge tubes from the liquid nitrogen and placed them in boiling water for 15 minutes to lyse the worms (Artal-Sanz and Tavernarakis, 2009). The resulting solution was cleared by centrifugation for 5 minutes at 15,000 rpm and ATP in the lysate was measured using the luciferase assay according to the manufacturer’s instructions or by HPCL according to established protocols (Ally and Park, 1992).

Analysis of C. elegans oxygen consumption

Oxygen consumption was measured using a Clark-type oxygen electrode (Qubit Systems Inc.), as described (Anderson and Dusenbery, 1977; Zarse et al., 2007). One-day-old adult worms in liquid culture at a density of ∼10,000 worms/ml were incubated with P-a (25 µM) for 24 hours in complete medium. Animals were washed three times with M9 buffer to remove bacteria and excess P-a and resuspended in M9 buffer at 10,000 worms/ml. One-ml aliquots of this suspension were transferred into the respiration chamber and respiration was measured at 25°C for 10 minutes while being exposed to an LED light centered at 660 nm at 1±2 W/m2. The control group was treated in the same way but not incubated with P-a.

Analysis of ROS formation in C. elegans

ROS formation was quantified as described by Schulz et al. (Schulz et al., 2007). Three-day-old worms were synchronized in liquid culture at a density of 500 worms/ml in complete medium, then divided into control and treatments groups. The treatment group was incubated for 24 hours with 12 µM P-a and the control group in DMSO vehicle. Bacterial food and P-a were removed by three repeated washes with M9 and the worms resuspended to 500 worms/ml M9 buffer. 50 µl of the suspension from each group was added to the wells of a 96-well plate with opaque walls and a transparent bottom. A 100 µM 2′,7′-dichlorofluorescin diacetate (Sigma-Aldrich, St. Louis, MO) solution in M9 buffer was prepared from a 100 mM 2′,7′-dichlorofluorescin diacetate stock solution in DMSO. 50 µl of this solution were pipetted into the suspensions, resulting in a final concentration of 50 µM. Additional controls included worms without 2′,7′-dichlorofluorescin diacetate and wells containing 2′,7′-dichlorofluorescin diacetate without animals; these were prepared in parallel. Five replicates were measured for each experimental and control group. Immediately after addition of 2′,7′-dichlorofluorescin diacetate, the fluorescence was measured in a SpectraMax M5 microplate reader (Molecular Devices, LLC, Sunnyvale, CA) at excitation and emission wavelengths of 502 and 523 nm. The plates were then exposed to red LED light and fluorescence was re-measured at 2.5 and 5 hours under conditions equivalent to those used previously.

Life span analysis

Population studies

Life span measurements were performed according to the method of Gandhi et al. and Mitchell et al. (Gandhi et al., 1980; Mitchell et al., 1979) with some modifications. Eggs were harvested and grown in darkness in a liquid culture at room temperature. To prevent any progeny developing, 5-fluoro-2′-deoxyuridine (FUDR) (Sigma-Aldrich, 120 µM final) was added at 35 hours after egg isolation, during the fourth larval molt. At day 4 of adulthood, the culture was split into control and experimental groups. The experimental group was treated with 12 µM P-a from a stock solution in DMSO. The control group was given the DMSO vehicle alone. The treated and control cultures were then split into two or three. The final density of worms in all reaction flasks was 500 worms/ml; each flask contained 10 ml, therefore a total of 5000 worms. The following day (day 5 of adulthood), worms were exposed to LED light centered at 660 nm at 1±2 W/m2 for 5 hours. Light exposure was repeated every day until the end of the experiment. For counting, aliquots were withdrawn and placed in a 96-well plate to give ∼10 worms per well; the worms were scored dead or alive on the basis of their movement, determined with the aid of a light microscope. A total of 60–100 worms (representing 1–2% of the total population) were withdrawn and counted at each time point for each flask. Counts were made at 2–3-day intervals and deaths were assumed to have occurred at the midpoint of the interval. Any larvae that hatched from eggs produced before the FUDR was added remained small in the presence of FUDR and were not counted. We used the L4 molt as time zero for life span analysis. To obtain the half-life, we plotted the fraction alive at each count verses time and fitted the data to a two-parameter logistic function using the software GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). The two-parameter model is known to fit survival of 95% of the population fairly accurately (Vanfleteren et al., 1998). Because changes in environment, such as temperature, worm density and the amount of food, can influence life span, control measurements were conducted at the same time under identical conditions. The concentration of P-a dropped (∼75%) throughout the life span studies and it was not adjusted (supplementary material Fig. S4F).

Life span measurements in 96-well microtiter plates

Life span was measured as described in the literature (Solis and Petrascheck, 2011), except that P-a was added at day 4 and light treatment commenced at day 5. Scoring (fraction alive) was done once on day 15.

Footnotes

  • Competing interests

    The authors declare no competing interests.

  • Author contributions

    C.X. conducted studies with worms, and ATP measurements in mitochondria and tissue homogenates. J.Z. conducted ATP measurements in mitochondria and tissue homogenates. D.M. conducted metabolite-binding distribution studies. I.W. designed and supervised the study and wrote the manuscript.

  • Funding

    This work was supported by the Department of the Navy, Office of Naval Research [grant number N00014-08-1-0150 to I.W.]; the Nanoscale Science and Engineering Initiative of the National Science Foundation [grant numbers CHE-0117752, CHE-0641532 to I.W.]; and the New York State Office of Science, Technology and Academic Research (NYSTAR).

  • Supplementary material available online at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.134262/-/DC1

  • Received April 30, 2013.
  • Accepted October 15, 2013.

References

Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5′-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight.

Source: Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP | Journal of Cell Science

Though research on migraines has come a long way, the reason why some people are much more prone to them is largely still a mystery. Physicians will often try to find the cause of recurrent migraine attacks by evaluating patients for other underlying medical conditions, food intolerances and sleep problems.

New research suggests doctors may want to consider screening for something even more simple: vitamin deficiencies. Recent work presented June 10 at the 58th Annual Scientific Meeting of the American Headache Society in San Diego finds that certain vitamin supplements could potentially help stop the occurrence of frequent migraines.

In a study on children, teens and young adults, the researchers found migraineurs (people who suffer from frequent migraine headaches) were much more likely to have mildly lower levels of vitamin D, riboflavin (B-2) and coenzyme Q10 (a naturally occurring, vitamin-like enzyme made by the body). All of these vitamins are needed for the mitochondria, the energy production centers of our cells, to function properly. “Deficient function, possibly through vitamin deficiency or over-utilization of vitamins, may put the migraineur at increased risk of energy deficiency,” says Dr. Andrew Hershey, director of the Migraine Center at the Cincinnati Children’s Hospital Medical Center and one of the researchers working on the project.

For the study, researchers at Cincinnati Children’s looked at existing data on 7,691 young patients who were migraine sufferers and their records of blood tests for baseline levels of vitamin D, riboflavin, coenzyme Q10 and folate. Of the study participants, 15 percent were found to have riboflavin levels below the standard reference range. A significant number of patients—30 percent—had coenzyme Q10 levels at the low end of the standard reference range. Significantly lower vitamin D was seen in nearly 70 percent of the patients.

The researchers also found that patients with chronic migraines were more likely to have coenzyme Q10 deficiencies than patients who had episodic migraines. Girls and young women were more likely than boys and young men to have coenzyme Q10 deficiencies at baseline. Boys and young men were more likely to have vitamin D deficiency, but the reasons behind these trends need further investigation. It is important to note that both Q10 and D3 can be created in the body by exposure to the sun.

Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5′-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight

From here PUBMED

What if conventional wisdom regarding our most fundamental energy requirements has been wrong all along and we can directly harness the energy of the Sun when we consume ‘plant blood’?

Plants are amazing, aren’t they? They have no need to roam about hunting other creatures for food, because they figured out a way to capture the energy of the Sun directly through these little light-harvesting molecules known as chlorophyll; a molecule, incidentally, which bears uncanny resemblance to human blood because it is structurally identical to hemoglobin, other than it has a magnesium atom at its core and not iron as in red blooded animals.

The energy autonomy of plants makes them, of course, relatively peaceful and low maintenance when compared to animal life, the latter of which is always busying itself with acquiring its next meal, sometimes through violent and sometimes through more passive means. In fact, so different are these two classes of creatures that the first, plants, are known as autotrophs, i.e. they produce their own food, and the animals are heterotrophs, i.e. they depend on other creatures for food.

autotroph and heterotroph

While generally these two zoological classifications are considered non-overlapping, important exceptions have been acknowledged. For instance, photoheterotrophs — a sort of hybrid between the autotroph and heterotroph — can use light for energy, but cannot use carbon dioxide like plants do as their sole carbon source, i.e. they have to ‘eat’ other things. Some classical examples of photoheterotrophs include green and purple non-sulfur bacteria, heliobacteria, and here’s where it gets interesting, a special kind of aphid that borrowed genes from fungi[1] to produce it’s own plant-like carotenoids which it uses to harness light energy to supplement its energy needs!

To learn more about this amazing creature read the study published in 2012 in Scientific Reports titled, “Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect.”

Aphid

A green carotenoid tinted aphid that is capable of capturing sunlight to produce energy. Interesting right?  But we need not look for exotic bacteria or insects for examples of photoheterotrophy. It turns out that animals, including worms, rodents and pigs (one of the closest animals to humans physiologically), have recently been found to be capable of taking up chlorophyll metabolites into their mitochondria, enabling them to use sunlight energy to ‘super-charge’ the rate (up to 35% faster) and quantity (up to 16-fold increases) of ATP produced within their mitochondria. In other words, a good portion of the animal kingdom is capable of ‘feeding off of light,’ and should be reclassified as photoheterotrophic!

The truly groundbreaking discovery referred to above was published last year in the Journal of Cell Science in a study titled, “Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP“, [contact me for the full version: sayerji@greenmedinfo.com] which I reported on recently, and which completely overturns the classical definition of animals and humans as solely heterotrophic.

Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP

Animals are Not Just Glucose-Burning Biomachines, But Are Light-Harvesting Hybrids

For at least half a century it has been widely believed among the scientific community that humans are simply glucose-dependent biomachines that can not utilize the virtually limitless source of energy available through sunlight to supplement our energy needs. And yet, wouldn’t it make sense that within the extremely intelligent and infinitely complex design of life, a way to utilize such an obviously abundant energy source as sunlight would have been evolved, even if only for the clear survival advantage it confers and not some ethical imperative (which is a possibility worth considering … vegans/Jainists, are you listening?).

As the philosopher of science Karl Popper stated, a theory can only be called scientific if it is falsifiable. And indeed, the scientific theory that humans are solely heterotrophic has just been overturned in light of empirical evidence demonstrating that mammals can extract energy directly from sunlight.

Deeper Implications of the New Study

First, let’s start by reading the study abstract, as it succinctly summarizes what may be of the most amazing discoveries of our time:

Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-59-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans [roundworm] leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight.”

And so, to review, the new study found that animal life (including us, mammals) are capable of borrowing the light-harvesting capabilities of ‘plant blood,’ i.e. chlorophyll and its metabolites, and utilize it to photo-energize mitochondrial ATP production. This not only helps to improve energy output, but the research found several other important things:

  • Despite the increased output, the expected increase in Reactive Oxygen Species (ROS) that normally attends increased mitochondrial function was not observed; in fact, a slight decrease was observed. This is a highly significant finding, because simply increasing mitochondrial activity and ATP output, while good from the perspective of energy, may accelerate aging and other oxidative stress (ROS) related adverse cellular and physiological effects. Chlorophyll, therefore, appeared to make animal mitochondria function in a healthier way.
  • In support of the above finding, worms administered an optimal range of chlorophyll were found to have significant extended life span. This is in accordance with well-known mechanisms linked to improved mitochondria function (in the absence of increased ROS) that increases cell longevity.

The last point in the abstract above is especially interesting to me. As a fan of coenzyme q10 supplementation for sometime, I have noticed profound differences qualitatively between ubiquinone (the oxidized form) and ubiquinol (the reduced, electron rich form), the latter of which has lead me to experience far greater states of energy and well-being than the former, even at far lower quantities (the molecular weight of a USP isolate does not reveal its bioavailability nor biological activity). The study, however, indicates that one may not need to take supplemental coenzyme Q10, even in its reduced form as ubiquinol, because chlorophyll-mediated sunlight capture and subsequent photo-energization of the electron transport chain will naturally ‘reduce’ (i.e. donate electrons) ubiquinone converting it into ubiquinol, which will result in increased ATP production and efficiency. This may also explain how they observed no increase in ROS (reactive oxygen species) while increasing ATP production: coenzyme q10 in reduced form as ubiquinol is a potent antioxidant, capable of donating an electron to quench/neutralize free radicals. This would be a biological win-win: increased oxidative phosphyloration-mediated energy output without increased oxidative damage.

From here: GreenMedInfo

And of course see more at Nutrition Facts

Hershey says the study adds to an ongoing observation that a significant number of people with migraines have lower levels of these vitamins. However, this trend is not seen in all patients across the board.

It’s been suggested for some time that vitamins play a role in this painful and debilitating chronic condition, but research on the topic is inconsistent. For example, a 2014 analysis in BioMed Research International of seven previously published papers on migraines and vitamin D deficiency suggested there isn’t enough evidence to back the claim that lower levels of the vitamin could make a person more prone to migraines. The researchers of that study found vitamin D deficiency  in 13.2 to 14.8 percent of migraine patients. These rates didn’t differ widely from the general population.

Even though evidence is limited, the nutraceutical industry has picked up on the potential for vitamins to alleviate and control migraines. A number of over-the-counter supplement cocktails are currently marketed to migraine sufferers. These typically combine the vitamins identified in this study, as well as magnesium, an organic mineral that when deficient has also been found to increase risk for chronic migraines. One study published in May in International Clinical Psychopharmacology found the odds of acute migraine headaches increased 35.3 times in patients who were identified as magnesium deficient. However, Hershey questions the use of magnesium supplements for treating migraines because he says only about 1 percent is absorbed by the body, and it is also difficult to measure in the blood.

In general, taking these vitamin supplements at recommended doses probably can’t hurt, but much more research is needed to determine whether vitamins alone could help stop migraines. One challenge researchers face is that vitamin supplements are often an intervention used in addition to medications and other experimental therapies. It’s therefore difficult to determine whether improvements in the condition can be explained for reasons other than supplement use

Source: Vitamin Deficiencies May Prompt Chronic Migraines

The woman left scarred by herbal medicine: Like thousands, Nilufer took St John’s Wort to help boost her mood… but little did she know she’d suffer a shocking side-effect

  • Nilufer Atik, 39, bought the capsules to deal with her mild depression
  • When she went on holiday to Turkey dark patches appeared on her skin
  • She found out that the same had happened to others using St John’s Wort

When Nilufer Atik’s doctor recommended she try the herbal medicine St John’s Wort for her mild depression, she gave it a go.

‘A close friend had passed away and I wasn’t sleeping,’ says the 39-year-old fitness coach from London. ‘From being happy-go-lucky, I was permanently down and tearful. I could have tried counselling, but I wanted a natural approach.’

She bought the capsules on the High Street, where they are readily available, and was careful to follow the correct dosage. 

Scroll down for video 

Nilufer Atik, 39, (pictured) bought the St John's Wort capsules to deal with her mild depression. When she went on holiday to Turkey dark patches suddenly appeared on her skin

Nilufer Atik, 39, (pictured) bought the St John’s Wort capsules to deal with her mild depression. When she went on holiday to Turkey dark patches suddenly appeared on her skin

Three months later, still feeling down, she went on holiday to Turkey. She wore SPF30 sunscreen throughout but returned with strange, dark patches on her skin. ‘They were really noticeable on my face, back, stomach and sides of my arms,’ she says.

Nilufer went to a doctor, who gave her some antibacterial cream but the more her tan faded, the more the marks showed. Searching for a possible cause, she went online and found the same big brown skin patches had happened to others using St John’s Wort.

‘It said on the label that it could cause mild photosensitivity, but I didn’t think it was a big deal. I’m not daft with sun cream and was really careful — but it was too late. ’

Nilufer was a victim of our growing obsession with herbal medicines, with many people choosing them over conventional treatments. Despite the NHS’s warning that ‘being ‘natural’ doesn’t necessarily mean they’re safe or indeed effective, we now spend £75 million a year on herbal cures.

It’s a deeply controversial idea and, alongside more minor cases such as Nilufer’s, there have been reports of people suffering liver damage, paralysis and even death after taking powerful herbal medicines from unlicensed herbal practitioners.

Despite this, herbal medicines such as St John’s Wort, aniseed and echinacea are readily available from many pharmacies. And their popularity has meant a surge in ‘medical herbalists’ who, like doctors, diagnose ailments then prescribe and mix up herbal medicines.

Nilufer (pictured) says she has to wear heavy stage make-up daily to cover the dark patches

As well as thick make-up Nilufer (pictured) also has to wear strong SPF50 creams every day to avoid the patches getting any darker

Both sides of Nilufer’s face can be seen here without make-up. She says she has to use heavy stage make-up to cover her dark patches as well as wearing SPF50 throughout the year to avoid the areas darkening

There are now 2,500 medical herbalists in the UK, according to the Department of Health, and a slowly growing number of clinical trials stacking up positive results.

Plants, botanical exponents say, provide a gentler, more natural and sustainable means of rebalancing health and wellbeing and cost far less than conventional medicines. Many bottles of herbal pills and potions cost less than £10 and last for months.

But experts warn that many herbal cures are at best unproven, and at worst dangerous. Professor Edzard Ernst, the world’s first professor of complimentary medicine, says: ‘The assumption that because herbal medicines are natural, they are safe, is not just wrong, it is dangerous.

 I had perfect olive skin, but now I wear thick stage make-up to cover the pigmentation marks and SPF50 throughout the year — even on the dullest days — otherwise, it gets worse.
Nilufer Atik

‘Some plants are poisonous, some interact with prescribed medicines, some are contaminated, and most aren’t effective as advertised — and whenever an ineffective treatment replaces an effective one for a serious condition, lives are in danger.’

There are also warnings that herbal medicines can interfere with other medicines — for instance, St John’s Wort makes the Pill work less effectively, while garlic and ginkgo biloba can prevent blood clotting which can be a problem before an operation.

For Nilufer, discovering her herbal medicine came with severe side-effects came too late.

Studies found that St John’s Wort’s active ingredient hypericin can react with light to produce free radicals that damage cells of the body, causing photosensitivity in some people.

Since then, Nilufer has spent £3,000 on numerous specialists, laser treatment, skin bleaching, collagen tablets, pigmentation creams, facials and microdermabrasion, to no avail.

‘I had perfect olive skin, but now I wear thick stage make-up to cover the pigmentation marks and SPF50 throughout the year — even on the dullest days — otherwise, it gets worse. I look so much older and it really bothers me. I get up before my boyfriend so he doesn’t see me without make-up.’

Gabriela Slater, 40, (pictured) is a reflexologist at Nu Reflexology in Wiltshire. Gabriela uses a cocktail of herbal medication and her favourite is extract of milk thistle, which she buys over-the-counter

Gabriela Slater, 40, (pictured) is a reflexologist at Nu Reflexology in Wiltshire. Gabriela uses a cocktail of herbal medication and her favourite is extract of milk thistle, which she buys over-the-counter

There’s little she can do now, but Nilufer feels people’s perceptions of herbal medicine need sharpening. ‘No medication is 100 per cent safe, but don’t think just because it is herbal and over-the-counter it’s not a drug. It is. It might do more harm than good.’

However, such warnings can’t put off many of herbal medicine’s devotees, including Sharon Shanahan, 44. Every morning, she takes a tincture of chamomile, St John’s Wort, ashwagandha, pasque flower and agnus castus, designed to boost her mood and strengthen her immune system.

It was prescribed by a medical herbalist, a practitioner who uses plants, bark, roots and flowers to cure health complaints. So far, it has had such a beneficial effect that she’s also tried herbal medicines on husband Paul, 42, a carpenter, and their young sons.

She first tried herbal medicine three years ago when caring for Benjamin, now 13, Callum, ten, and Sam, eight, became too much. ‘I was working as an accounts administrator and balancing things at home. I got pins and needles down my arms and headaches through stress. I didn’t want anti-depressants because I was worried about side-effects.’

Gabriela is seen here before she started using herbal remedies. She first tried herbal treatments ten years ago to deal with the irregular periods she had as a result of polycystic ovary syndrome

Gabriela is seen here before she started using herbal remedies. She first tried herbal treatments ten years ago to deal with the irregular periods she had as a result of polycystic ovary syndrome

Sharon had read about Anne Marie Reilly, a medical herbalist, and made an appointment.

‘I’d bought vitamins over-the-counter, but never tried anything like this before. It cost £35 for the session and we spoke for over an hour in her office, going through my health problems, diet and lifestyle before being prescribed the tincture. It took a couple of months, but it has worked wonders. Now I’m doing two jobs and feel much more energetic.’ Sharon has put her children on herbal cures, too. The cost to the family is £50 a month, that’s £1,800 over three years to treat all of them.

‘Before taking herbal medicines all three boys were often catching colds, but they are now much better and haven’t needed to see the doctor for two years.

‘Sam had mild eczema on his legs and arms. Within three weeks of taking the wild flower heartsease, his complexion changed and the eczema improved. From looking washed out, he had colour in his cheeks and was glowing.’

Gabriela (pictured) used the herbal remedy agnus cactus and made some changes to her diet in an attempt to get pregnant

Gabriela (pictured) used the herbal remedy agnus cactus and made some changes to her diet in an attempt to get pregnant

The NHS warns that the safety of herbal medicines has not been proven in children and adverse reactions to herbs such as nausea, abdominal pain, vomiting or liver damage are well documented.

But despite herbology’s detractors, herbalist Anne Marie feels it has an important place in modern medicine. ‘Orthodox medicine is a lot to do with symptom control. It’s useful for acute situations such as serious infections or cancer, but when people have more chronic or complex conditions the more holistic approach of herbal medicine can have a better effect.’

Gabriela Slater, 40, a reflexologist at Nu Reflexology in Wiltshire, uses a cocktail of herbal medication. Her favourite is extract of milk thistle, which she buys over-the-counter.

‘I use it to support my liver function and take it four times a year as a detox when I need a boost. I feel cleaner, my skin looks brighter and I have more regular bowel movements. It’s a great way to cleanse the system.’

Three months after Gabriela (pictured) started taking agnus cactus she was pregnant with her daughter, Elizabeth

Three months after Gabriela (pictured) started taking agnus cactus she was pregnant with her daughter, Elizabeth

She also took agnus castus (known as wild lavender) ten years ago. ‘I used it when I was diagnosed with polycystic ovary syndrome to regulate my monthly cycle and help me conceive. I’d suffered irregular periods my whole life and while there were a number of medical treatments, I wanted something more natural.’

Combined with a few dietary changes and nutritional supplements it worked, and three months later Gabriela was pregnant with Elizabeth. ‘While I can’t say for definite whether it was down to the agnus castus, I feel sure that it contributed a great deal.’

Any herbal medication bought over-the-counter or online in this country, by law, must have a THR (Traditional Herbal Registration) stamp; the sign it has been assessed against quality and safety standards — though it’s no guarantee that it’ll work.

However, medical herbalists are unregulated. At the moment, anyone can set up a website and start making and selling cures (provided they have one-to-one consultations beforehand and make the medicines on their premises).

Understandably, most herbalists are keen to stamp out rogue traders, but in a report in March, the Government backtracked from statute regulation (something the Secretary of State promised in 2011), advising voluntary regulation instead.

The problem is that a lack of regulation means stories such as Nilufer’s may become more common as our love of all-natural cures continues to flourish.

When she went on holiday dark patches appeared on her skin. She found the same had happened to others using St John’s Wort.

Source: Nilufer Atik took St Johns Wort to boost her mood but it had a side-effect | Daily Mail Online

Of Talc, Cancer, and Fear of Chemicals

wo weeks ago, a jury decided that Johnson & Johnson’s baby powder caused a woman’s ovarian cancer, and ordered the company to pay her $55 million. Her attorney said the case against talc, the principal ingredient in the powder, was clear:  “Science has been simple and consistent over the last 40 years,” he told the jury, according Bloomberg News. “There’s an increased risk of ovarian cancer from genital use of talc.”

viewpointsThe company, which was ordered to pay $72 million in a separate ovarian cancer case in February, responded aggressively, posting “A Message About Talc” on its website following the jury’s decision, which Johnson & Johnson says it plans to appeal. “After 30 years of studies by medical experts around the world, science, research and clinical evidence continues to support the safety of cosmetic talc,” the company noted, pointing to two recent studies – one from the Harvard School of Public Health, and another published last fall in the Journal of the National Cancer Institute — that showed no association between talc and ovarian cancer.

“We also know that some epidemiology studies have reported an association between talc and ovarian cancer,” the company conceded. “However, various governmental and non-governmental agencies as well as other expert panels have reviewed and an